
Solution to Chapter 6 Problems

Problem 6.1

The spectrum of the signal at the output of the LPF isSs,o(f ) = Ss(f )|�( f2W )|2. Hence, the signal power is

Ps,o =
∫ ∞

−∞
Ss,o(f )df =

∫ W

−W
P0

1+ (f/B)2df

= P0B arctan(
f

B
)

∣∣∣∣W−W = 2P0B arctan(
W

B
)

Similarly, noise power at the output of the lowpass filter is

Pn,o =
∫ W

−W
N0

2
df = N0W

Thus, the SNR is given by

SNR= 2P0B arctan(W
B
)

N0W
= 2P0

N0

arctan(W
B
)

W
B

In the next figure we plot SNR as a function ofW
B

and for 2P0
N0

= 1.
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Problem 6.2
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1) The transfer function of theRC filter is

H(s) = R
1
Cs

+ R = RCs

1+ RCs
with s = j2πf . Hence, the magnitude frequency response is

|H(f )| =
(

4π2(RC)2f 2

1+ 4π2(RC)2f 2

) 1
2

This function is plotted in the next figure forf in [−10,10] and 4π2(RC)2 = 1.
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2) The overall system is the cascade of theRC and the LPF filter. If the bandwidth of the LPF isW , then
the transfer function of the system is

V (f ) = j2πRCf

1+ j2πRCf
�(

f

2W
)

The next figure depicts|V (f )| for W = 5 and 4π2(RC)2 = 1.
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3) The noise output power is

Pn =
∫ W

−W
4π2(RC)2f 2

1+ 4π2(RC)2f 2

N0

2
df

= N0W − N0

2

∫ W

−W
1

1+ 4π2(RC)2f 2
df

= N0W − N0

2

1

2πRC
arctan(2πRCf )

∣∣∣∣W−W
= N0W − N0

2πRC
arctan(2πRCW)

The output signal is a sinusoidal with frequencyfc and amplitudeA|V (fc)|. Sincefc < W we conclude
that the amplitude of the sinusoidal ouput signal is

A|H(fc)| = A

√
4π2(RC)2f 2

c

1+ 4π2(RC)2f 2
c

and the output signal power

Ps = A2

2

4π2(RC)2f 2
c

1+ 4π2(RC)2f 2
c

Thus, the SNR at the ouput of the LPF is

SNR=
A2

2
4π2(RC)2f 2

c

1+4π2(RC)2f 2
c

N0W − N0
2πRC arctan(2πRCW)

=
A2

N0

πRCf 2
c

1+4π2(RC)2f 2
c

2πRCW − arctan(2πRCW)

In the next figure we plot

G(W) = 1

2πRCW − arctan(2πRCW)
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as a function ofx = 2πRCW , when the latter varies from 0.1 to 0.5.
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Problem 6.3

The noise power content of the received signalr(t) = u(t)+ n(t) is

Pn =
∫ ∞

−∞
Sn(f )df = N0

2
× 4W = 2N0W

If we write n(t) as

n(t) = nc(t) cos(2πfct)− ns(t) sin(2πfct)

then,

n(t) cos(2πfct) = nc(t) cos2(2πfct)− ns(t) cos(2πfct) sin(2πfct)

= 1

2
nc(t)+ 1

2
nc(t) cos(2π2fct)− ns(t) sin(2π2fct)

The noise signal at the output of the LPF is1
2nc(t) with power content

Pn,o = 1

4
Pnc =

1

4
Pn = N0W

2

If the DSB modulated signal isu(t) = m(t) cos(2πfct), then its autocorrelation function is̄Ru(τ) =
1
2RM(τ) cos(2πfcτ) and its power

Pu = R̄u(0) = 1

2
RM(0) =

∫ ∞

−∞
Su(f )df = 2WP0
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From this relation we findRM(0) = 4WP0. The signal at the output of the LPF isy(t) = 1
2m(t) with power

content

Ps,o = 1

4
E[m2(t)] = 1

4
RM(0) = WP0

Hence, the SNR at the output of the demodulator is

SNR= Ps,o

Pn,o
= WP0

N0W

2

= 2P0

N0

Problem 6.4

First we determine the baseband signal to noise ratio( S
N
)b. WithW = 1.5× 106, we obtain(

S

N

)
b

= PR

N0W
= PR

2× 0.5× 10−14 × 1.5× 106
= PR108

1.5

Since the channel attenuation is 90 db, then

10 log
PT

PR
= 90�⇒ PR = 10−9PT

Hence, (
S

N

)
b

= PR108

1.5
= 108 × 10−9PT

1.5
= PT

15

1) If USSB is employed, then(
S

N

)
o,USSB

=
(
S

N

)
b

= 103 �⇒ PT = 15× 103 = 15 KWatts

2) If conventional AM is used, then (
S

N

)
o,AM

= η

(
S

N

)
b

= η
PT

15

where,η = α2PMn
1+α2PMn

. Since, max[|m(t)| = 1, we have

PMn
= PM =

∫ 1

−1

1

2
x2dx = 1

3

and, therefore

η = 0.25× 1
3

1+ 0.25× 1
3

= 1

13

Hence, (
S

N

)
o,AM

= 1

13

PT

15
= 103 �⇒ PT = 195 KWatts

143



3) For DSB modulation(
S

N

)
o,DSB

=
(
S

N

)
b

= PT

15
= 103 �⇒ PT = 15 KWatts

Problem 6.5

1) Since|H(f )| = 1 for f = |fc ± fm|, the signal at the output of the noise-limiting filter is

r(t) = 10−3[1+ α cos(2πfmt + φ)] cos(2πfct)+ n(t)
The signal power is

PR = lim
T→∞

∫ T
2

− T
2

10−6[1+ α cos(2πfmt + φ)]2 cos2(2πfct)dt

= 10−6

2
[1+ α2

2
] = 56.25× 10−6

The noise power at the output of the noise-limiting filter is

Pn,o = 1

2
Pnc =

1

2
Pn = 1

2

N0

2
× 2× 2500= 25× 10−10

2) Multiplication of r(t) by 2 cos(2πfct) yields

y(t) = 10−3

2
[1+ α cos(2πfmt)]2+ 1

2
nc(t)2

+ double frequency terms

The LPF rejects the double frequency components and therefore, the output of the filter is

v(t) = 10−3[1+ α cos(2πfmt)] + nc(t)
If the dc component is blocked, then the signal power at the output of the LPF is

Po = 10−6

2
0.52 = 0.125× 10−6

whereas, the output noise power is

Pn,o = Pnc = Pn = 2
N0

2
2000= 40× 10−10

where we have used the fact that the lowpass filter has a bandwidth of 1000 Hz. Hence, the output SNR is

SNR= 0.125× 10−6

40× 10−10
= 31.25 14.95 db

Problem 6.6
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The one-sided noise equivalent bandwidth is defined as

Beq =
∫∞

0 |H(f )|2df
|H(f )|2max

It is usually convenient to substitute|H(f )|2f=0 for |H(f )|2max in the denominator, since the peaking of the
magnitude transfer function may be high (especially for smallζ ) creating in this way anomalies. On the
other hand ifζ is less, but close, to one,|H(f )|2max can be very well approximated by|H(f )|2f=0. Hence,

Beq =
∫∞

0 |H(f )|2df
|H(f )|2f=0

and since

|H(f )|2 =
ω2
n + j2πf

(
2ζωn − ω2

n

K

)
ω2
n − 4π2f 2 + j2πf 2ζωn

we find that|H(0)| = 1. Therefore,

Beq =
∫ ∞

0
|H(f )|2df

For the passive second order filter

H(s) = s(2ζωn − ω2
n

K
)+ ω2

n

s2 + 2ζωn + ω2
n

τ1 � 1, so thatω
2
n

K
= 1

τ1
≈ 0 and

H(s) = s2ζωn + ω2
n

s2 + 2ζωn + ω2
n

TheBeq can be written as

Beq = 1

4πj

∫ j∞

−j∞
H(s)H(−s)ds

Since,H(s) = KG(s)/s

1+KG(s)/s we obtain lim|s|→∞H(s)H(−s) = 0. Hence, the integral forBeq can be taken
along a contour, which contains the imaginary axis and the left half plane. Furthermore, sinceG(s) is a
rational function ofs, the integral is equal to half the sum of the residues of the left half plane poles of
H(s)H(−s). Hence,

Beq = 1

2

[
(s + ζωn + ωn

√
ζ 2 − 1)H(s)H(−s)

∣∣∣∣
s=−ζωn−ωn

√
ζ2−1

+(s + ζωn − ωn
√
ζ 2 − 1)H(s)H(−s)

∣∣∣∣
s=−ζωn+ωn

√
ζ2−1

]

= ωn

8
(4ζ + 1

ζ
) = 1+ 4ζ 2

8ζ/ωn

= 1+ ω2
nτ

2
2 + (ωnK )2 + 2ω

2
nτ2
K

8ζ/ωn

≈ 1+ ω2
nτ

2
2

8ζ/ωn
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where we have used the approximationωn
K
≈ 0.

Problem 6.7

1) In the case of DSB, the output of the receiver noise-limiting filter is

r(t) = u(t)+ n(t)
= Acm(t) cos(2πfct + φc(t))

+nc(t) cos(2πfct)− ns(t) sin(2πfct)

The power of the received signal isPs = A2
c

2 Pm, whereas the power of the noise

Pn,o = 1

2
Pnc +

1

2
Pns = Pn

Hence, the SNR at the output of the noise-limiting filter is(
S

N

)
o,lim

= A2
cPm

2Pn

Assuming coherent demodulation, the output of the demodulator is

y(t) = 1

2
[Acm(t)+ nc]

The output signal power isPo = 1
4A

2
cPm whereas the output noise power

Pn,o = 1

4
Pnc =

1

4
Pn

Hence, (
S

N

)
o,dem

= A2
cPm

Pn

and the demodulation gain is given by

dem. gain=
(
S
N

)
o,dem(

S
N

)
o,lim

= 2

2) In the case of SSB, the output of the receiver noise-limiting filter is

r(t) = Acm(t) cos(2πfct)± Acm̂(t) sin(2πfct)+ n(t)
The received signal power isPs = A2

cPm, whereas the received noise power isPn,o = Pn. At the output of
the demodulator

y(t) = Ac

2
m(t)+ 1

2
nc(t)
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with Po = 1
4A

2
cPm andPn,o = 1

4Pnc = 1
4Pn. Therefore,

dem. gain=
(
S
N

)
o,dem(

S
N

)
o,lim

=
A2
cPm
Pn

A2
cPm
Pn

= 1

3) In the case of conventional AM modulation, the output of the receiver noise-limiting filter is

r(t) = [Ac(1+ αmn(t))+ nc(t)] cos(2πfct)− ns(t) sin(2πfct)

The total pre-detection power in the signal is

Ps = A2
c

2
(1+ α2PMn

)

In this case, the demodulation gain is given by

dem. gain=
(
S
N

)
o,dem(

S
N

)
o,lim

= 2α2PMn

1+ α2PMn

The highest gain is achieved forα = 1, that is 100% modulation.

4) For an FM system, the output of the receiver front-end (bandwidthBc) is

r(t) = Ac cos(2πfct + φ(t))+ n(t)
= Ac cos(2πfct + 2πkf

∫ t

−∞
m(τ)dτ)+ n(t)

The total signal input power isPs,lim = A2
c

2 , whereas the pre-detection noise power is

Pn,lim = N0

2
2Bc = N0Bc = N02(βf + 1)W

Hence, (
S

N

)
o,lim

= A2
c

2N02(βf + 1)W

The output (post-detection) signal to noise ratio is(
S

N

)
o,dem

= 3k2
fA

2
cPM

2N0W 3

Thus, the demodulation gain is

dem. gain=
(
S
N

)
o,dem(

S
N

)
o,lim

= 3β2
f PM2(βf + 1)

(max[|m(t)|])2 = 6β2
f (βf + 1)PMn

5) Similarly for the PM case we find that(
S

N

)
o,lim

= A2
c

2N02(βp + 1)W
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and (
S

N

)
o,dem

= k2
pA

2
cPM

2N0W

Thus, the demodulation gain for a PM system is

dem. gain=
(
S
N

)
o,dem(

S
N

)
o,lim

= β2
pPM2(βp + 1)

(max[|m(t)|])2 = 2β2
p(βp + 1)PMn

Problem 6.8

1) Since the channel attenuation is 80 db, then

10 log
PT

PR
= 80�⇒ PR = 10−8PT = 10−8 × 40× 103 = 4× 10−4 Watts

If the noise limiting filter has bandwidthB, then the pre-detection noise power is

Pn = 2
∫ fc+B

2

fc−B
2

N0

2
df = N0B = 2× 10−10B Watts

In the case of DSB or conventional AM modulation,B = 2W = 2× 104 Hz, whereas in SSB modulation
B = W = 104. Thus, the pre-detection signal to noise ratio in DSB and conventional AM is

SNRDSB,AM = PR

Pn
= 4× 10−4

2× 10−10 × 2× 104
= 102

and for SSB

SNRSSB= 4× 10−4

2× 10−10 × 104
= 2× 102

2) For DSB, the demodulation gain (see Problem 5.7) is 2. Hence,

SNRDSB,o = 2SNRDSB,i = 2× 102

3) The demodulation gain of a SSB system is 1. Thus,

SNRSSB,o = SNRSSB,i = 2× 102

4) For conventional AM withα = 0.8 andPMn
= 0.2, we have

SNRAM ,o = α2PMn

1+ α2PMn

SNRAM ,i = 0.1135× 2× 102
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Problem 6.9

1) For an FM system that utilizes the whole bandwidthBc = 2(βf + 1)W , therefore

2(βf + 1) = 100

4
�⇒ bf = 11.5

Hence, (
S

N

)
o,FM

= 3
A2
c

2

(
βf

max[|m(t)|]
)2

PM

N0W
= 3

A2
c

2
β2
f

PMn

N0W

For an AM system (
S

N

)
o,AM

= A2
cα

2PMn

2N0W

Hence, (
S
N

)
o,FM(

S
N

)
o,AM

= 3β2
f

α2
= 549.139∼ 27.3967 dB

2) Since the PM and FM systems provide the same SNR(
S

N

)
o,PM

= k2
pA

2
c

2

PM

N0W
= 3k2

fA
2
c

2W 2

PM

N0W
=
(
S

N

)
o,FM

or

k2
p

3k2
f

= 1

W 2
�⇒ β2

p

3β2
fW

2
= 1

W 2

Hence,

BWPM

BWFM
= 2(βp + 1)W

2(βf + 1)W
=

√
3βf + 1

βf + 1

Problem 6.10

1) The received signal power can be found from

10 log
PT

PR
= 80�⇒ PR = 10−8PT = 10−4 Watts

(
S

N

)
o

= α2PMn

1+ α2PMn

(
S

N

)
b

= α2PMn

1+ α2PMn

PR

N0W

Thus, withPR = 10−4, PMn
= 0.1,α = 0.8 and

N0W = 2× 0.5× 10−12 × 5× 103 = 5× 10−9
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we find that (
S

N

)
o

= 1204 30.806 db

2) Using Carson’s rule, we obtain

Bc = 2(β + 1)W �⇒ 100× 103 = 2(β + 1)5× 103 �⇒ β = 9

We check now if the threshold imposes any restrictions.(
S

N

)
b,th

= PR

N0W
= 20(β + 1) = 10−4

10−12 × 5× 103
�⇒ β = 999

Since we are limited in bandwidth we chooseβ = 9. The output signal to noise ratio is(
S

N

)
o

= 3β20.1

(
S

N

)
b

= 3× 92 × 0.1× 105

5
= 486000 56.866 db

Problem 6.11

1) First we check whether the threshold or the bandwidth impose a restrictive bound on the modulation index.
By Carson’s rule

Bc = 2(β + 1)W �⇒ 60× 103 = 2(β + 1)× 8× 103 �⇒ β = 2.75

Using the relation (
S

N

)
o

= 60β2(β + 1)PMn

with
(
S
N

)
o
= 104 andPMn

= 1
2 we find

104 = 30β2(β + 1) �⇒ β = 6.6158

Since we are limited in bandwidth we chooseβ = 2.75. Then,(
S

N

)
o

= 3β2PMn

(
S

N

)
b

�⇒
(
S

N

)
b

= 2× 104

3× 2.752
= 881.542

Thus, (
S

N

)
b

= PR

N0W
= 881.542�⇒ PR = 881.542× 2× 10−12 × 8× 103 = 1.41× 10−5

Since the channel attenuation is 40 db, we find

PT = 104PR = 0.141 Watts
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2) If the minimum required SNR is increased to 60 db, then theβ from Carson’s rule remains the same,
whereas from the relation (

S

N

)
o

= 60β2(β + 1)PMn
= 106

we findβ = 31.8531. As in part 1) we chooseβ = 2.75, and therefore(
S

N

)
b

= 1

3β2PMn

(
S

N

)
o

= 8.8154× 104

Thus,

PR = N0W8.8154× 104 = 2× 10−12 × 8× 103 × 8.8154× 104 = 0.0014

and

PT = 104PR = 14 Watts

3) The frequency response of the receiver (de-emphasis) filter is given by

Hd(f ) = 1

1+ j f
f0

with f0 = 1
2π×75×10−6 = 2100 Hz. In this case,(

S

N

)
o,PD

= (W
f0
)3

3
(
W
f0
− arctanW

f0

) ( S
N

)
o

= 106

From this relation we find (
S

N

)
o

= 1.3541× 105 �⇒ PR = 9.55× 10−5

and therefore,

PT = 104PR = 0.955 Watts

Problem 6.12

1) In the next figure we plot a typical USSB spectrum forK = 3. Note that only the positive frequency axis
is shown.

USSB

f3W2WW0
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2) The bandwidth of the signalm(t) isWm = KW .

3) The noise power at the output of the LPF of the FM demodulator is

Pn,o =
∫ Wm

−Wm
Sn,o(f )df = 2N0W

3
m

3A2
c

= 2N0W
3

3A2
c

K3

whereAc is the amplitude of the FM signal. As it is observed the power of the noise that enters the USSB
demodulators is proportional to the cube of the number of multiplexed signals.

The i th message USSB signal occupies the frequency band[(i − 1)W, iW ]. Since the power spectral
density of the noise at the output of the FM demodulator isSn,o(f ) = N0

A2
c
f 2, we conclude that the noise

power at the output of thei th USSB demodulator is

Pn,oi =
1

4
Pni =

1

4
2
∫ iW

−(i−1)W

N0

A2
c

f 2df = N0

2A2
c

1

3
f 3

∣∣∣∣iW−(i−1)W

= N0W
3

6A2
c

(3i2 − 3i + 1)

Hence, the noise power at the output of thei th USSB demodulator depends oni.

4) Using the results of the previous part, we obtain

Pn,oi

Pn,oj
= 3i2 − 3i + 1

3j2 − 3j + 1

5) The output signal power of thei th USSB demodulator isPsi = A2
i

4 PMi
. Hence, the SNR at the output of

thei th demodulator is

SNRi =
A2
i

4 PMi

N0W3

6A2
c
(3i2 − 3i + 1)

Assuming thatPMi
is the same for alli, then in order to guarantee a constant SNRi we have to selectA2

i

proportional to 3i2 − 3i + 1.

Problem 6.13

1) The closed loop transfer function is

H(s) = G(s)/s

1+G(s)/s =
G(s)

s +G(s) =
1

s2 +√
2s + 1

The poles of the system are the roots of the denominator, that is

ρ1,2 = −√2±√
2− 4

2
= − 1√

2
± j 1√

2

Since the real part of the roots is negative, the poles lie in the left half plane and therefore, the system is
stable.
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2) Writing the denominator in the form

D = s2 + 2ζωns + ω2
n

we identify the natural frequency of the loop asωn = 1 and the damping factor asζ = 1√
2
.

Problem 6.14

1) The closed loop transfer function is

H(s) = G(s)/s

1+G(s)/s =
G(s)

s +G(s) =
K

τ1s2 + s +K =
K
τ1

s2 + 1
τ1
s + K

τ1

The gain of the system atf = 0 is

|H(0)| = |H(s)|s=0 = 1

2) The poles of the system are the roots of the denominator, that is

ρ1,2 = −1±√
1− 4Kτ1

2τ1
=

In order for the system to be stable the real part of the poles must be negative. SinceK is greater than zero,
the latter implies thatτ1 is positive. If in addition we require that the damping factorζ = 1

2
√
τ1K

is less than
1, then the gainK should satisfy the condition

K >
1

4τ1

Problem 6.15

The transfer function of the RC circuit is

G(s) = R2 + 1
Cs

R1 + R2 + 1
Cs

= 1+ R2Cs

1+ (R1 + R2)Cs
= 1+ τ2s

1+ τ1s

From the last equality we identify the time constants as

τ2 = R2C, τ1 = (R1 + R2)C

Problem 6.16

Assuming that the input resistance of the operational amplifier is high so that no current flows through it,
then the voltage-current equations of the circuit are

V2 = −AV1

V1 − V2 =
(
R1 + 1

Cs

)
i

V1 − V0 = iR
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where,V1, V2 is the input and output voltage of the amplifier respectively, andV0 is the signal at the input of
the filter. Eliminatingi andV1, we obtain

V2

V1
=

R1+ 1
Cs

R

1+ 1
A
− R1+ 1

Cs

AR

If we letA→∞ (ideal amplifier), then

V2

V1
= 1+ R1Cs

RCs
= 1+ τ2s

τ1s

Hence, the constantsτ1, τ2 of the active filter are given by

τ1 = RC, τ2 = R1C

Problem 6.17

1) The power is given by

P = V 2

R

Hence, withR = 50,P = 20, we obtain

V 2 = PR = 20× 50= 1000�⇒ V = 1000
1
2 = 31.6228 Volts

2) The current through the load resistance is

i = V

R
= 31.6228

50
= 0.6325 Amp

3) The dBm unit is defined as

dBm= 10 log

(
actual power in Watts

10−3

)
= 30+ 10 log(actual power in Watts)

Hence,

P = 30+ 10 log(50) = 46.9897 dBm

Problem 6.18

1) The overall loss in 200 Km is 200×20= 400 dB. Since the line is loaded with the characteristic impedance,
the delivered power to the line is twice the power delivered to the load in absence of line loss. Hence, the
required power is 20+ 400= 420 dBm.
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2) Each repeater provides a gain of 20 dB, therefore the spacing between two adjacent receivers can be up
to 20/2 = 10 Km to attain a constant signal level at the input of all repeaters. This means that a total of
200/10= 20 repeaters are required.

Problem 6.19

1) Since the noise figure is 2 dB, we have

10 log

(
1+ Te

290

)
= 2

and thereforeTe = 169.62◦ K.

2) To determine the output power we have

Pno = GkBneq(T + Te)

where 10 logG = 35, and therefore,G = 103.5 = 3162. From this we obtain

Pno = 3162× 1.38× 10−23 × 10× 106(169.62+ 50) = 9.58× 10−11 Watts∼ −161.6 dBm

Problem 6.20

Using the relationPno = GkBneq(T + Te) with Pno = 108kT0, Bneq = 25× 103, G = 103 andT = T0, we
obtain

(108 − 25× 106)T0 = 25× 106Te �⇒ Te = 3T0

The noise figure of the amplifier is

F =
(

1+ Te
T

)
= 1+ 3 = 4

Problem 6.21

The proof is by induction onm, the number of the amplifiers. We assume that the physical temperatureT is
the same for all the amplifiers. Form = 2, the overall gain of the cascade of the two amplifiers isG = G1G2,
whereas the total noise at the output of the second amplifier is due to the source noise amplified by two stages,
the first stage noise excess noise amplified by the second stage, and the second stage excess noise. Hence,

Pn2 = G1G2Pns + G2Pni,1 + Pni,2
= G1G2kT Bneq + G2(G1kBneqTe1)+ G2kBneqTe2

The noise of a single stage model with effective noise temperatureTe, and gainG1G2 is

Pn = G1G2kBneq(T + Te)
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Equating the two expressions for the output noise we obtain

G1G2(T + Te) = G1G2T + G1G2Te1 + G2Te2

or

Te = Te1 +
Te2
G1

Assume now that if the number of the amplifiers ism− 1, then

T ′
e = Te1 +

Te2
G1

+ · · · Tem−1

G1 · · ·Gm−2

Then for the cascade ofm amplifiers

Te = T ′
e +

Tem
G ′

whereG ′ = G1 · · ·Gm−1 is the gain of them− 1 amplifiers and we have used the results form = 2. Thus,

Te = Te1 +
Te2
G1

+ · · · Tem−1

G1 · · ·Gm−2
+ Tem

G1 · · ·Gm−1

Proof of Fries formula follows easily with the substitutionFk =
(
1+ Tek

T0

)
into the above equation.
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