Solution to Chapter 2 Problems

Problem 2.1

1. I (2r +5) =11 (2(t + 2)). This indicates first we have to plBt(2r) and then shift it to left by2. A

plot is shown below:
12t +5)

2. T (-2t 4+ 8) =1 (—2(t — 4)). This operation combines a scaling, flipping, and shifting.
I1(—2t + 8)

o

| 15 17
4 4

3. Y 2o At — n) is a sum of shifted triangular pulses. Note that the sum of the left and right side of
triangular pulses that are displaced by one unit of time is equal to 1, The plot is given below

x3(1)

1
-1

4, Letx(t) = 2A (é) — A1), thenxa(r) = > o2 x(t —4n). First we plotx(s) then by shifting it
by multiples of 4 we can plat4 (7). x(¢) is a triangular pulse of width 4 and height 2 from which a

standard triangular pulse of width 1 and height 1 is subtracted. The result is a trapezoidal pulse, which

when replicated at intervals of 4 gives the plotg{r).
x4(t)

—6 -2 2 6

5. Itis obvious from the definition of sgn that sgri2s) = sgn(r). Thereforexs(z) = 0.
6. xe(t) is a sequence of alternating triangular pulses each with width 2 and height 1.
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xe(t)

7. x7(t) is sindr) contracted by a factor of 10.

-0.4 I I I I I

-1 -08 -06 -04 -0.2 0 02 04 06 038 1

8. This is sin¢t) expanded by a factor of 10.

|
o
Y

9. xg(¢) is the product of a sinusoidal signal with frequency 2 and an expanded rectangular pulse.
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Problem 2.2

1. x[n] = sind3n/9) = sinan/3).
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3. x[n] = Fu_1(n/4) — (3 — Du_1(n/4—-1). Forn < 0,x[n] =0, for0<n < 3, x[n] = 7 and for

n>4,xnl=3-7+1=1
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Problem 2.3

x1[n] = 1 andxy[n] = cog2rn) = 1, for all n. This shows that two signals can be different but their
sampled versions be the same.

Problem 2.4

Letx1[n] andx,[n] be two periodic signals with period&, andN,, respectively, and eV = LCM (N1, N»),
and definex[n] = x1[n] 4+ x2[n]. Then obviouslyxi[n + N1 = x1[n] andxz[n + N] = x,[n], and hence
x[n] = x[n + NJ, i.e.,x[n] is periodic with periodv.
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For continuous-time signals, (r) andx,(¢) with periodsT; and T, respectively, in general we cannot
find aT suchtha = k,T1 = k,T> for integersk; andk,. This is obvious for instance if; = 1 and7, = .
The necessary and sufficient condition for the sum to be periodic i%{nm a rational number.

Problem 2.5
Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational, hence
the sum is periodic.

2. The frequencies are 2000 a@—o. Their ratio is not rational, hence the sum is not periodic.
3. The sum of two periodic discrete-time signal is periodic.

4. The fist signal is periodic but c[dsL000:] is not periodic, since there is n¥ such that cgd.100Qn +
N)] = cog1100G:) for all n. Therefore the sum cannot be periodic.

Problem 2.6
1)
e’ t>0 —e ' >0
x1(t) =49 —e' t <0 = xi1(—1) = e t<0 =-—x1(0)
0 r=0 0 =0

Thus,x1(¢) is an odd signal

2) x2(t) = cos(12Qrt + %) is neither even nor odd. We have ¢a20rt + %) = cos(%) cog120rt) —
sin(%) sin(1207+). Thereforex, (1) = cos(%) cog120r 1) andxy,(r) = —sin (%) sin(120r). (Note: This
part can also be considered as a special case of part 7 of this problem)

3)

x3(t) = e = x3(—1) = 71T = 711 = x3()

Hence, the signal;(¢) is even.
4)

x4(r)={g t’ég =>x4<—z)={ : i g —

Thus, the signat,(¢) is odd.
5)

0 r>0

t t>0
xs(t) = { = x5(—1) = {
—t t<0

0 r<0

The signalxs(7) is neither even nor odd. The even part of the signal is

el) =
ol 2 2 <0 "2

xs(t)+x5(—t)={§ t>0 |
2

7

©2005 Pearson Education, Inc., Upper Saddle river, NJ. All rights reserved. This material is protected under all copyright laws as
currectly exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the




The odd part is

t) — xs5(—t L +t>0 t
Xs.0(t) = Xs(t) —xs(=) _J 3 120 _t
2 5 t<0 2
6)
xg(t) = sint + cost = xg(—t) = — Sint + cost

Clearly xg(—1t) # xe(t) for everyr since otherwise 2 sin= 0 V¢. Similarly xe(—¢) # —xg(¢) for every:
since otherwise 2 cas= 0 V¢. Thusxg(¢) is neither even or odd. The even and the odd parts;@) are
given by

xe(t) + x6(—1)

Xeo(t) = = cost
t) — — .
Xoo(f) = xe(t) sz( t) — sins

7)
x7(1) = x1(t) — x2(t) = x7(—1) = x1(—1) — x2(—1) = x2(¢) + x2(2)

Clearly x7(—t) # x7(t) since otherwise,(r) = 0 Vz. Similarly x;(—t) #£ —x7(¢) since otherwisea;(¢) =
0Vz. The even and the odd partsxef(z) are given by

x7(1) + x7(—1)

xre = LD )
x1o(f) = L2’”(_”=—xz<r>

Problem 2.7

For the first two questions we will need the integrak [ ¢ cos xdx.

1 1 1 .
I = —/co§x de™ = Ze¢™ cog x + —/e‘” sin 2¢ dx

a a a
1 1 .

= Ze™cofx + — | sin2x de™
a a
1 1 . 2

= Ze™coSx + —e™sin2x — — / ¥ cos X dx
a a a
1 1 . 2

= Ze*coSx + —eTsin2y — — / e (2cogx — 1) dx
a a a
1 1 . 2 4

= Ze™cofx + —e™sin2 — —/e“x dx — =1
a a? a? a?

Thus,

1 H 2 ax
I = m [(aco§x+sm2x)+ﬂe

8

©2005 Pearson Education, Inc., Upper Saddle river, NJ. All rights reserved. This material is protected under all copyright laws as
currectly exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the




1)

T T
2 2
E, = Iim/ x3(t)dx = Iimf e~% cog tdt
T—o00 7% T—o0 0
T
lim —[( 2cost +sin2) — 1]
T—>o00 8 0
1 -T
= lim = |(— 2co§ +SInT—1)e +3
T—o0 8 8
Thusx,(¢) is an energy-type signal and the energy contenf& 3
2)
; :
E, = Iim/ x2(t)dx = Iim/ e~% cog tdt
T—o0 _g T—o0 _%
0 ;
lim / e % COSztdt—i-f e % codtdt
T—o00 7% 0
But,

0 1 . °
lim / e~? cos tdt lim = [(—2co$t+sin2) — 1] e
T—o0 _% T—o00 8

1 T
lim =| -3+ (2cof — +1+sinT)e’
T—o0 8 2

=0

[

find P,

since 24 cosd + sinf > 0. Thus,E, = oo since as we have seen from the first question the second integral
is bounded. Hence, the signal(¢) is not an energy-type signal. To teskif(z) is a power-type signal we

T
I Y 1 (2,
P, = lim —/ e 2 cofdr+ lim —/ e % co dt
T—oo T _% T—oo T Jo

—2 cog dt is zero and

N Y 1
Tlinoo?/_ge cosdr = Iinoo8—T[2co§ +1+smT]

>

T
Butlimr_o 7 fo? €

lim =ef > I|m _(1+ T+7T? > I|m T =00
T—oo T
Thus the signat,(z) is not a power-type signal

3)
r r r
E. = I|m/ x3(t)dx = I|m/ sgri(r)dr = I|m/ di=1lm T =
T—o0 _% T—o0 _% T—o00 _% T—o0
P, =

1 [z 1 [z 1
lim —f sgrf(t)dt = lim —f dt=lm =T =1
T—>oo T _% T—oo T T

-z T—oo T
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The signal3(z) is of the power-type and the power content is 1.

4)
First note that
_ k+5-
Tlinoo/_ Aco2r ft)dt = Z / co2r f1)dt =
so that
. % 2 : 1 2 2
Tllm /TA cof2rft)ydt = Tllm 5/ (A + A%2cog2r2f1))dt
-2

MR NH

1 1
= lim = A%dt = lim ZA°T =
2/ 2 e

T—o0

~

N

E, = Tlim / (A%coS(2n fat) + B2 coS (27 fot) + 2A B cOS 2 f1t) COS27 fot ) )dt

NI~ N\~|

= Iimf A?cog (27 fit)dt + I|m /j B?cog (27 fot)dt +

T—o0

AB im / " [cod(@n(fy + f2) + cod(@r(fy - foldr
= o0o+4+o00+ 02= 00

Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two cases
fi= foandfi # fo. Inthe first case

P, = lim —/ (A + B)?cog(2x f1)dt

T—oo T

T

2

= I|m —(A+ 3)2/ dt = E(A+B)2
If fi#E f then

P, = lim 1 / j(Azcoé(znflz)+Bzco§(2nf2r)+2ABcos(2nflt)cos(2nf2t))dz

T— 00
— im L A2T+BZT _A2+B2
T T | 2 2 | 2 2

Thus the signal is of the power-type andfif= f> the power content i6A + B)?/2 whereas iff; # f> the
power content iS (A% + B?)

Problem 2.8

1. This is signak,(¢) plotted in problem 2.1, as shown there it is obvious that the signal is periodic.
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2. 00+ =07 At—-n+1)=>" A(t—(mn-21)=>2"__ At —n)=xyt). Hence

n=—oo n=—oo n=—0oo

x2(t) is periodic with period 1.

3. This is the sum of two periodic signals with periods&nd 1. Since the ratio of the two periods is not
rational the sum is not periodic (by the result of problem 2.4)

4. sinn] is not periodic. There is no integdf such that sifn + N] = sin[n] for all n.

5. x50 4+T) =Yl yt—nT+T)=Y2 yt—m—-—DT)=> " _ yit—nT)=xs).
Thereforexs(z) is periodic with periodr .

Problem 2.9
1)

1 [z 1 [z 1
P, = lim —/ A2 |/ @It gy = lim —/ A%dt = lim —A’T = A®
T—oo T ;ZT T—soo T —TT T—oo T

e @]

Thusx (1) = Ae/ @7 /o'+9) is a power-type signal and its power contentits

2)

~

1 [z 1 [z A2 1 1% A2
P, = lim = A% coS(2n fot + 0)dr = lim —/ —dr+ lim —/ — coS4r fot + 20) dt
Tv/zT (27 fot +0) Jm > + 7 5 47 fot + 20)

T—o00 —TT T— o0 -

N

~

N

As T — oo, the there Will be no contribution by the second integral. Thus the signal is a power-type signal
and its power content i§;.

3)

T T
P, = lim lfzuzl(z)dz: lim E/Zdz: lim ir_1
T x - T T Jo 2 2

— 00 T—o00

Thus the unit step signal is a power-type signal and its power contef2is 1

4)

T T T/2

. 2 2 . 2 2 1 . 2 1 /

E., = lim / x“(t)dt = lim f K7 2dt = lim 2K*“t2
T—o0 —TT T—o00 0 T—o00

0
= lim v2K2T? = oo

T—o0

Thus the signal is not an energy-type signal.

1 fE N S
P, = |lim —/ x“(t)dt = lim —/ K<t~ 2dt
T—oo T ;2T T-oo T Jg
R Y L R, . oo 1
= lim =2K?%2| = lim Z2K%(T/2)? = lim V2K?T 2 =0
T—00 0 T—oo T T—o00
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SinceP; is not bounded away from zero it follows by definition that the signal is not of the power-type (recall
that power-type signals should satisfyOP, < c0).

Problem 2.10

tr+1, -1<t=<0 1 >0
A)=1 —r+1, 0<r<1 u-1(t) =3y 1/2 t=0
0, 0.W. 0 <O

Thus, the signat (1) = A(#)u_1(¢) is given by

0 t <0 0 r<-1
12 =0 t+1 —-1<t<0
x(t) = = x(—1) =
—t+1 0<t<1 1/2 =0
0 tr>1 0 t>0

The even and the odd part oft) are given by

x(t) +x(—1) _ 1

() = ———~ = _A(t

X (1) > > (1)
0 r<-1
_’2_1 -1<t<0

x(t) —x(—1)

Xo(t) = — =) 0 =0
=4 0<r<1
0 1<t

Problem 2.11
1) Suppose that

x(t) = xX(t) + x2(t) = x2(r) + x2(1)

with x1(¢), x2(¢) even signals and!(z), x1(¢) odd signals. Them(—¢) = x1(t) — x1(¢) so that

) x(1) +2x(—t)
_x2(0) + x5(t) + xZ(—1) + x2(—1)
B 2
2 204 _ 2
_ 2x5(t) + xuz(t) x5(1) _ xez(t)

Thusx(r) = x2(t) andxl(t) = x(t) — x1(t) = x(t) — x2(¢) = x2(t)

12
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2) Letxl(t), x2(¢t) be two even signals and (¢), x2(¢) be two odd signals. Then,

y(t) = x;(Ox2(t) = y(—t) = x}(—)xZ(—1) = xH(OxZ(1) = y (1)
2(t) = xp(Ox2(1) = z2(—1) = x(—0)x2(=1) = (—x (1)) (—x2(1)) = 2(1)

Thus the product of two even or odd signals is an even signalv e x1(7)x1(t) we have
v(=1) = x;(—=0)x;(=1) = x; (1) (=x,(1)) = —x; (), (1) = —v (1)

Thus the product of an even and an odd signal is an odd signal.

3) One trivial example is + 1 and-=

t+1°
Problem 2.12
1) x1(r) = T1(¢) + I1(—1). The signalll(z) is even so that,(r) = 2I1(z)
2
+ ....... ... +
1 1
2 2
2)
0, t<—-1/2
1/2, t=1/2
1, -1/2<t<1/2
xo)=TI(@) —TI(t —1) = 0, tr=1/2
-1, 1/2<t<3/2
-1/2, r=3/2
0, 3/2<t
.
. E
* 3
2 %: o2
-1
13
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3)

0, t<-1/2
1/4, t=-1/2
tr+1 -1/2<t<0

—t+1 0<r<1/2

x3(1) = A@) - 11(1) =

1/4, t=1/2
0, 1/2 <t
/1\
. 1 .
e - 4. Xy
_1 1
2 2
A)xa(t) =Y v o At — 2n)
1
-3 -1 1 3

5)xs(t) = 3,2 (=D"A(t —n)

7) x7(t) = 14 sgnr). Note thaty7(0) = 1.

14
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8) xg(1) = sgrf(r). Note thatrg(0) = 0

9) xg9(r) = sind(z)sgn(¢). Note thatxg(0) = 0.

10) x10(t) = Y02 (—=D)"nd(t —n)

11)x11(t) = Yooy 5 T1(4) Note that forjt| < 1/2,x13(t) = Y ooy 5 =1

15
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Problem 2.13

1) The value of the expression s{n@ (¢) can be found by examining its effect on a functip() through
the integral

foo ¢ (1)sinat)s(t) = ¢(0)sin0) = sina0) /OO @ (t)é(1)
Thus sin€z)s (¢) has the same effect as the function $hé(r) and we conclude that

x1(t) = sind1)8(r) = sind0)8(¢) = 8(¢)

2) sindr)§(t — 3) = sina3)8(t — 3) = 0.

3) sindt — 2)8(t) = sind0 — 2)é(¢r) = 0.
4)

o]

xa(t) = At) * Z 8(t — 2n)

n=—oo

= Z /oo At — 1)8(tr — 2n)dt

n=—oo

= Z foo A(r — )8(t — 2n)dt

n=—0o
oo

= Z A(t — 2n)

n=—oo

16
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5)

x5(t) = A(t)*(S’(t):/ A —1)8 (7)dt
0 t< -1
: t=-1
J 1 -1<r<0
= (-1)—A(t—1) =A@ = 0 =0
dt =0
-1 0O<t<l1
1
—z = 1
0 1<t

6)

xg(t) = cogt)8(3r) = :—tcos(t)a(t) = %cos(O)&(t) = %3(:)

7) x7(t) = cos(2t + §) 8(3r) = 3cos(2 + %) 8(r) = 3c0s(%) 8(r). Hencexz(r) = 38(1).

8) xg(t) = cos1)8(3r + 1) = cog1)S(3(t + 1/3)) = 2cog1)d(r + 1/3) = Fco(—1/3)8(t + 1/3) ~
0.3155(r + 1/3)

9)

1 1 1
xg(t) =8(5t) x§(4t) = gS(I) * Z(S(t) = 2—08(t)

10) Note that the effect of the functidf” («t) on¢(¢) is

f T o8P @ndr = + / " o (Lysar
—00 d J_x o

d"
dt"

1 n+1 d"
= (—) (—D"——ao(x)
(07 —

1
= S
o dx" =0

t
¢ (=)
o

t=0

Thuss™ (at) = -8 (1) and

/ 1 1 ! 1 /
x10(t) = 8(50) +8'(31) = Z6(1) » 58'(1) = 728'(1)

11) To see the effect of ce8'(¢) on a functiong (¢) consider the integral

o d
/ ¢(1) cor)d'(t)dt = (—1)E(COS(I)¢(I))

t=0

. d
= (=D(=sin®)e () + COS(I)EQW))

t=0

d
COS(O)(—1)5¢> (1)

t=0

17
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The effect is the same as that of the function(6a%(z) so that

x11(t) = cog0)8'(r) = 8'(1)

12)
t —/Ool'lt82t } dz—/oogl'ltat } —}
x12(t) = N ()8(2( —2)) =] .2 (#)8( —2)—4
13)
/OO sina?)8()dr = sind0) = 1
14)
/Oo singr + 1)6(¢)dr = sin1l) =0
15)
N1t 1 [t * 1
/_OO ;[EH(;)](SU)& = ;E /_oo H(;)S(t)dt = 2 > = 1
16)
/OO cogr) ia(znt) dt = 3 i/oo cos?)8(¢)dt = ii =1
— 00 1 T n oo - on
Problem 2.14

The impulse signal can be defined in terms of the limit

. 1/
o = tm 2 ()
Bute—* is an even function for every so thats(¢) is even. Sincé(z) is even, we obtain
8(t) =8(—t) = §'(t) = =8'(—1)
Thus, the functiord’(¢) is odd. For the functiod™ (t) we have
f ¢ ()87 (—t)dt = (=1)" / ¢ (1)8" (1)dt
where we have used the differentiation chain rule

d d d
LDy = & s-D_ = (—Ds®(_
70 t)—d(_t>3 (=) (=1) = (=D& (=)

18
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Thus, ifn = 21 (even)
/ " B8 (~nydi = / " 508" (s
and the functiord™ (¢) is even. Ifn = 2/ + 1 (odd), then(—1)" = —1 and
/ T 608" (i = - / " 08" (nds

from which we conclude tha (¢) is odd.

Problem 2.15

x() x 8™ (1) = /OO x()8™(t — 1) dt

The signab™(r) is even ifn is even and odd if is odd. Consider first the case that= 2/. Then,

x(r)' -

00 2l
x(0) x 8 (1) = f X8 — 1) dr = (-2 L =

2l
oo dt

If nis odd then,

00 21+1
x(0) x84 @) = f _FOEDITR @~ dr = (D (DT dd,zl+lx<r> _

n

= 0

In both cases

x(t) * 8™ (1) = dn x(1)
dt"
The convolution ofc () with u_1(¢) is
x(t) xu_q1(t) = /OO x(Du_1(t — t)dt

Butu_1(t — ) = 0fort > r so that

t

x(t) xu_q(t) :/ x(t)drt

—00

Problem 2.16

1) Nonlinear, since the responsext@) = 0 is noty(¢) = O (this is a necessary condition for linearity of a
system, see also problem 2.21).

2) Nonlinear, if we multiply the input by constantl, the output does not change. In a linear system the
output should be scaled byl.

19
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3) Linear, the output to any input zero, therefore for the input(z) + Bx2(¢) the output is zero which can
be considered agy,(¢) + By2(t) = o x 0+ B x 0 = 0. This is a linear combination of the corresponding
outputs taxy () andx,(z).

4) Nonlinear, the output to(¢) = 0 is not zero.

5) Nonlinear. The system is not homogeneous far # 0 andx () > 0 theny(¢) = T[ax(¢)] = 0 whereas
z(t) =aT[x()] = «.

6) Nonlinear. The system is not homogeneous far(ify # 0 then

¥(0) = Tlax(®)] = 0 _ sgrey 20
()] ()]

whereas

x(t)
lx(2)]

z)=aT[x(t)] =«
7) Nonlinear. The system is not homogeneous far ik 0 theny(r) = T[ax(¢)] = |a||x(¢)| whereas

z(t) = aT[x()] = a|x(¢)|. The system is not additive either singg(r) + x2(t)| # |x1(t)| + [x2(8)|.
8) Linear. For ifx(¢t) = ax1(¢) + Bx2(¢) then
Tlaxi(t) + px2(1)] = (ax1(?) + Bxa(t))e™
= axi(t)e”" + Bxa()e™ = aT[x1()] + BT [x2(1)]
9) Linear. For ifx () = ax1(t) + Bx»(t) then
Tloxy(t) + Bx2(1)] = (axa(r) + Bxa(t))u(t)
= ax1(Du(®) + Bx2(Du(t) = aT [x1(¢)] + BT [x2(2)]
10) Linear.
y(&) = (ax1(®) + Bx2(1)8(t) = (ax1(0) + Bx2(0))8(r)
= ax1(0)8(t) + Bx2(0)5 (1) = ax1(t)5(¢) + Bx2(t)5(1)

11) Linear.

y) = (@xi(t) + Bxa(1)) ) 8¢t —nT)

n=—oo

= ) (axs(nT) + Bxo(nT))8(t — nT)

= Y a8 —nT)+ Y PranT)8(t —nT)
= axy(t) Y 8(t—nT)+pxa(t) > 8(t—nT)
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12) Linear. For ifx () = ax1(t) + Bxo(¢) then

4 (axy(1) + Bro(t)) t >0
(ax1(t) + Bx2(t)) t <0
0 =0

Tlaxy(r) + Bxz(1)]

@ Lxy(t) + BLxo(t) t>0
= ax1(t) + Bxa(t) t<0
0 t=0
= aTla]+ BTx2(1)

13) Linear. We can write the output of this feedback system as
YO =x@O) +yt—1) =) xt—n)
n=0
Then forx () = ax1(t) + Bx2(t)

y(t) = ) (axi(t —n) + Bxa(t —n))

n=0
= « le(t —n)+ 8 sz(f —n))
n=0 n=0

= ayi(?) + By2t)

14) Linear. Assuming that only a finite number of jumps occur in the intérvab, ] and that the magnitude
of these jumps is finite so that the algebraic sum is well defined, we obtain

N N
YO =Tlex()] =Y at(ty) =a Y Jolty) = aT[x(1)]

n=1 n=1
whereN is the number of jumps iG—o0, t] and J, (¢,) is the value of the jump at time instamt that is
Jx(tn) = Iimo(x(tn + 6) - x(tn - 6))
Forx(¢t) = x1(¢) + x2(¢) we can assume that(z), x»(¢) andx(¢) have the same number of jumps and at the

same positions. This is true since we can always add new jumps of magnitude zero to the already existing
ones. Then for each, J,(t,) = Jy,(t,) + Jy,(t,) and

N N N
YO =Y Jet) =D Tt + Y Ty (ta)
n=1 n=1 n=1

so that the system is additive.

Problem 2.17
Only if (=)
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If the systent/ is linear then
Tloxa(t) + Bxo(t)] = aT [x1 ()] + BT [x2(1)]
forall o, 8 andx(z)’s. If we setg = 0, then
Tlaxi(t)] = aT[x1(1)]
so that the system is homogeneous. If wexdet 8 = 1, we obtain
Tx1(2) + x2(0)] = Tx2 ()] + T x2(1)]

and thus the system is additive.
If (<)
Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then

Tlox(r) + Bx2(1)]
Tlax1(t)] + T [Bx2(2)] (additive system)
= a7 [x1(t)] 4+ BT [x2(¢)] (homogeneous system)

Thus the system is linear.

Problem 2.18

Neither homogeneous nor additive.
Neither homogeneous nor additive.
Homogeneous and additive.
Neither homogeneous nor additive.
Neither homogeneous nor additive.
Homogeneous but not additive.
Neither homogeneous nor additive.

Homogeneous and additive.

© © N o g A W b P

Homogeneous and additive.

[EEN
o

. Homogeneous and additive.

[EY
[EY

. Homogeneous and additive.

=
N

. Homogeneous and additive.

[EEN
w

. Homogeneous and additive.

=
N

. Homogeneous and additive.
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Problem 2.19
We first prove that

Tlnx(®)] =nT[x(1)]

for n € N. The proof is by induction om. Forn = 2 the previous equation holds since the system is
additive. Let us assume that it is true foand prove that it holds for + 1.

T[(n + Dx(@®)]
= Tlnx@) +x@)]
= T[nx(t)] + 7T[x ()] (additive property of the system)
= nT[x()]+ T[x(®)] (hypothesis, equation holds fay
= (m+DT[x@®)]

Thus7 [nx(¢)] = n7 [x(¢)] for everyn. Now, let
x(1) = my(t)

This implies that

T [@} = TIy()]
m
and sincel [x(1)] = 7 [my ()] = m7 [y(t)] we obtain

T [@} = lT[x(z)]
m m

Thus, for an arbitrary rational = § we have

Eol o[ (FOY] 2 er [20] 2 &

Problem 2.20
Clearly, for anyx

@20 gy 20 ={ S YOAO o

) = Tlax()] =4 “¥®

Y { 0 X)) =0 0 x')=0
Thus the system is homogeneous and if it is additive then it is linear. Howewér) i& x1(z) + x»(¢) then
x'(t) = x1(t) + x5(t) and

(x1(t) + x2(1))? 7éxf(t) x3(1)
x1(1) + x5(1) xp (1) x5(1)
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for somexy(¢), x2(z). To see this lek,(r) = ¢ (a constant signal). Then

2 2 2
Tla() + xo(t)] = SO+ :M®+%mm+c
xl(t) xl(t)

and

x2(1)
x1(t)

T[x1()] + Tlx2(t)] =

ThusT [x1(t) + x2(2)] # T[x1(¢)]+ T[x2(t)] unlessc = 0. Hence the system is nonlinear since the additive
property has to hold for eveny (1) andxa(z).
As another example of a system that is homogeneous but non linear is the system described by

x@)+x¢t—-1) x@)x@—-1) >0

Tx()] =
()] { 0 otherwise

Clearly Tax(t)] = aT[x ()] but T[x1(t) + x2(6)] # Tlx1(1)] + T [x2(2)]

Problem 2.21

Any zero input signal can be written as£(¢) with x(¢) an arbitrary signal. Then, the response of the linear
system isy(t) = L[0- x(#)] and since the system is homogeneous (linear system) we obtain

y() =L[0-x(0)] =0-L[x()] =0

Thus the response of the linear system is identically zero.

Problem 2.22

For the system to be linear we must have
Tlaxy(t) + Bxa(t)] = aT [x1(t)] + BT [x2(1)]
for everya, 8 andx(z)’s.

Tlaxy(t) + Bx2(t)] = (axi(t) + Bxa(t)) CO 27 fot)
= ax1(t) COS2m fot) + Pxo(t) COY 27 fot)
= o7 [x1(t)] + BT [x2(1)]

Thus the system is linear. In order for the system to be time-invariant the respange-tag) should be
y(t — to) wherey(¢) is the response of the systemut@). Clearly y(t — fo) = x(¢t — tg) COS 27 fo(t — 1))

and the response of the systenxi@ — #g) is y'(t) = x(t — to) COS27 fot). Since co&r fo(t — o)) iS not
equal to co&r fyr) for all ¢, 1o we conclude thay'(z) # y(¢ — t9) and thus the system is time-variant.

Problem 2.23

1) False. For iff1[x(¢)] = x3(r) and Tx[x(r)] = x¥3(¢) then the cascade of the two systems is the identity
systemT [x(¢)] = x(¢) which is known to be linear. However, bofi[-] andT5[-] are nonlinear.

24

©2005 Pearson Education, Inc., Upper Saddle river, NJ. All rights reserved. This material is protected under all copyright laws as
currectly exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the




2) False. For if

Ix(t) t#0

tx(t) t#0
0 0 =0

Nlx()] = { Tolx ()] = {

ThenTy[T1[x(¢)]] = x(¢) and the system which is the cascadddf] followed by 7>[] is time-invariant ,
whereas botlfy[-] andT5[-] are time variant.

3) False. Consider the system

t>0

0 =)= "
= X =

Y 1 <0

Then the output of the systenir) depends only on the input(t) for ¢ < r This means that the system is
causal. However the response to a causal sigtial,= 0 forr < 0, is nonzero for negative valuesmoénd
thus it is not causal.

Problem 2.24

1) Time invariant: The response i@ — to) is 2x(t — tg) + 3 which isy(t — #p).

2) Time varying the response i@t — 1) is (r + 2)x(t — o) but y(t — t0) = (t — fo + 2)x (¢t — o), obviously
the two are not equal.

3) Time varying: The response idr — 1p) ist + x(t — tp) Whereasy(t — tg) = x(t — tg) + ¢ — to.

4) Time-varying system. The response — o) is equal tax (—(t —tp)) = x(—t +19). However the response
of the system ta (r — 1p) is z(t) = x(—t — o) Which is not equal to(r — 1)

5) Time-varying system. Clearly
y() =x(Du_1(t) = y(t — 10) = x(t — 1Q)u—1(t — o)
However, the response of the systemxto — 1) is z(t) = x(t — to)u_1(¢) which is not equal to (r — 1p)
6) Time-varying system. Clearly
y(@) = x(1)8(1) = y(t —to) = x(t —10)3(t — to) = x(0)(7 — 10)
However, the response of the system {o— o) isz(t) = x(t — 10)3(t) = x(—10)8(¢) which is different with
y(t — 10).

7) Time-varying system. It is true thatr — 1o) is the response to(t — 1) for ro = mT. However, for the
system to be time-invariant this relation should hold for evgryhich is not the case.

8) Time-invariant system. Clearly
t t—1o
y(t) = / x(v)dt = y(t —tp) = / x(t)dt
The response of the systemit¢@ — 1g) is
t t—1g
z(t) = / x(t —tp)dt = / x()dv = y(t — tg)

oo o0
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where we have used the change of variabte T — 1.

9) Time-invariant system. Writing(z) asd .- . x(t —n) we get
Yt —t)= Y x(t—to—n)=TIx(t — o]

10) Time-invariant system. The response of the system is simply = sgn(x(¢)). Thusy( — tg) =
sgn(x (¢ — o)) is the response of the system@ — 7).

Problem 2.25

The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output of a
system which is the cascade of two LTI systems does not depend on the order of the systems. This can be
easily seen by the commutative property of the convolution

ha(t) * ho(t) = ha(t) x ha(1)

Let1(r) be the impulse response of a differentiator, ang (et be the output of the system (¢) with input
x(1). Then,
2(t) = ha(t) % x'(t) = ho(t) * (ha(t) * x(1))
ho(t) x hy(t) * x(t) = hy(t) x ho(t) * x(t)
= h@)*y®) =y

Problem 2.26

The integrator is is a LTI system (why?). Itis true that the output of a system which is the cascade of two LTI
systems does not depend on the order of the systems. This can be easily seen by the commutative property
of the convolution

ha(t) * ho(t) = ha(t) x ha(1)

Let i1(¢) be the impulse response of an integrator, ang (et be the output of the systeh3(¢) with input
x(1). Then,

20 = hat)x f x(2)dr = ha(t) * (ha(t) * x(1))

= ho(t) *xh1(t) x x(t) = hq(t) x ho(t) x x(1)

t

= h) () = / V(o) d

—0o0

Problem 2.27

The output of a LTI system is the convolution of the input with the impulse response of the system. Thus,

t

8@ = /OO h(T)e_“(’—f)u,l(l‘ —1)dt = / h(l—)e—a(t—r)dt

o0 —00
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Differentiating both sides with respecttave obtain

t t

5t = (—a)e ™ /_oo h(t)e* dt + e‘”% [f_

= (—a)8(t) + e “h(t)e” = (—a)d(t) + h(t)

h(r)e‘”dr]

]

Thus
h(t) =ad(t) +8'(@1)

The response of the system to the inp(f) is

e @]

y(1) = / x(t) [ad(t — 1) +68'(t — 1)]dt

o8]

= a/oox(t)é(t—r)dr—i—/oox(r)(S’(t—r)dt

oo —00

= (t)~|-i (1)
= ax T

Problem 2.28

For the system to be causal the output at the time ingiattould depend only on(zr) for ¢ < 1.

to+T 1 fo 1 to+T
y(to) = —/ x(t)dt = —/ x(t)dt + —f x(t)dt
2T Jio-1 2T Jio-1 2T J,,

We observe that the second integral on the right side of the equation depends on valugdmfr greater
thanzy. Thus the system is non causal.

Problem 2.29

Consider the system

x(t) x()#0

1 =Tx{®)] =
y(@) =T[x(@)] 1+ =0

This system is causal since the output at the time instd@pends only on values of ) for r < ¢ (actually
it depends only on the value of7) for r = ¢, a stronger condition.) However, the response of the system
to the impulse signal(¢) is one forr < 0 so that the impulse response of the system is nonzero<db.

Problem 2.30

1. Noncausal: Since far< 0 we do not haveinc(t) = 0.

2. Thisis arectangular signal of width 6 centereg at 3, for negative’sitis zero, therefore the system
is causal.

3. The system is causal since for negatige: () = 0.
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Problem 2.31
The outputy(¢) of a LTI system with impulse respongér) and input signali_,(¢) is

y(@) = /OO h(tu_1(t —t)dt = f h(t)u_1(t —t)dt + /ooh(t)ul(t —1)dt

o0 —0o0

Butu_,(r — ) = 1fort <t sothat

/ h(Du_1(t — t)dt =/ h(t)dt

oo —00

Similarly, sinceu_1(t — t) = 0 for T < ¢ we obtain
/ h(tu_1(t —t)dt =0
t
Combining the previous integrals we have

y(t) = /OO h(Du_1(t — t)dt = / h(t)dt

o0 —0oQ

Problem 2.32

Let 2(¢) denote the the impulse response of a differentiator. Then for every input signal

d
x(t)xh(t) = Zx(t)
If x(z) = 8(¢z) then the output of the differentiator is its impulse response. Thus,
8(t) x h(t) = h(t) = §'(r)

The output of the system to an arbitrary input) can be found by convolving(¢) with &'(¢). In this case

e¢]

y(t) =x(t) 8 (t) = / x(1)8'(t — t)dt = %x(t)

Assume that the impulse response of a system which delays its inpaisdy(z). Then the response to
the inputs(z) is
S(t) xh(t) =8(t — to)
However, for every ()
S(t)xx(t) = x(¢)

so thath () = 8(t — tg). The output of the system to an arbitrary input) is

o0

y() =x()*x6(t —fg) = / x(T)é(t —tg—1)dTt = x(t — 1)

—00
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Problem 2.33
The response of the system to the signel(¢) + Bxo(¢) is

yi(t) =/ (axi(t) + Bxo(1))dT =0t/ xl(r)dt+/3/ xo(t)dt
—T t— t—T

T
Thus the system is linear. The response {o— 1) is
t t—1o
yi(t) = / x(t —to)dt = / x()dv = y(r — 1o)
t—T t—to—T

where we have used the change of variables t — 75. Thus the system is time invariant. The impulse
response is obtained by applying an impulse at the input.

t t t—T
h(t) = / (v)dt = / s(t)dr — / d()dt =u_1(t) —u_1(t —=T)
T - _

oo o0

Problem 2.34
1)

o0 t
e 'u_1(t) xe 'u_1(t) = / e’u_l(r)e(t’>u_1(t—r)d7::/ e'dt

o0 0
_ te! t>0
o <o
2)
e u_1(t) xu_1(t) = f u_1(0)e " u_q1(r — t)dt
_,OO [
= f e Idr = ete
0 0
_ l1—e¢e? t>0
o t <0
3)

o]

% I+§
x(t) =TI@x) > AQt) = / [IO)A( — 0)do = / At —0)do = f . A(v)dv

1
- —2 2
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3
IS—E = x()=0
3 1 SE SN 43 1, 3 9
—— < —= 1) = = (= = —t —t+ =
2<_2:>x() /1 (v + Ddv (2v+v)_l 2+2+8
1 1 0 t+%
——<t< - = x(@)= (v-l—l)dv—i—/ (—v + Ddv
2 2 t—3 0
1, 0 1, t+3 ,
= —_ _— :_[ -
(2v +v)t_%+( 5V ~|—v)0 +4
13 (t) /1( + 1)d (12+)1 1 3,2
- < = x() = —v v=(—=v%+v = 2 _Zp4 =
2 72 -1 2 1 2 2 's8
3
§<t = x(t)=0
Thus,
0 t<—3
W gieg —fer<—d
x() = —t2+§1 —%<t§%
Wogi4g s
0 %<t
4)
t
x(t) = A@)sgn(t) xu_1(t) = / A(T)sgn(t)drt
tr<-1 — x(@® =0
1<t<0 = (z)—/t( 1)d—(12 )t—ltztl
<t < x—_oov v = 2v v_l—2 >
1 ! 1 1 ! 1 1
0<tr<1 ) =—= —v+ Ddv = —Z + (—=v? =242
<t < = x() Z—I—/O(v—i-)v 2—|—( 21)—|-v)O 2+ >
l<t = x(t)=0
5)

o0 t

X(t) = A1) % QN = / A(T)Sgrt — 1)t = /

—0Q —00

A(r)dtr — /00 A(r)dt = x1(t) — x2(¢)
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t<-1 = x1(t) =0, xx@®)=l1landx(r)=-1
d 1 ! 1 1
-1<1<0 = xl(t)=/(v+1)dv=(—v2+v) =241+ =
1 2 o, 2 2
0 1 1 0 1
xz(t)zf (v—i—l)dv—i—/ (—v+1)dv=(—v2+v) + =
' 0 2 , 2
. 11‘2 t+1
2 2
x(1) = x1(t) — x2(t) =12 + 2t
0O<r<1 = (z)—lft( + 1)d —1+( Les )t— Loyl
>l = X1 —20 v v—2 2v v0_2 5
(z)—/l( T Ddv = (— oo+ )l—lzz (e
x2(t) = t v v = 2v v t—2 5
x(t) = x1(t) — x2(t) = =12 + 2¢
1<t = xi() =1, x@)=0andx(t)=1
6)
x(t) = ADu_1(t) x I1(r) = f At — t)dt
0
Note thatlT1(s — ) = 1 for |t — | < 1/2 and zero otherwise. Thus
1
t<—§ = x() =0
1 1 A 1 “11, 103
—5St=-5; = x(t)=/o A(r)dr:(—§v2+v)0 =—§z2+§r+§
1<t<3 = x(?) /1 A(t)dr (12+)1 1t2 3t+9
= = x(t) = T =(—zv v ==t"— = =
2= —2 1 2 1 2 2 8
3
§<t = x()=0

Problem 2.35

The output of a LTI system with impulse resporse) is
y() = f x(t —t)h(r)dtr = / x(t)h(t — t)dt
Using the first formula for the convolution and observing that) = 0, T < 0 we obtain

o0

0
y(t) = / x(t —)h(t)dT —I—/
- 0

o0

x(t —t)h(t)dr = /oox(t — D)h(r)dt
0

Using the second formula for the convolution and writing

y(t) =/ x(‘c)h(t—t)dt+/oox(t)h(t—1:)dt

o0
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we obtain

y(t):/ x(D)h(t — 1)d7

]

The lastis true sinck(r — t) = 0fort < t so thatffox(r)h(t —17)dt =0

Problem 2.36

In order for the signalg, (¢) to constitute an orthonormal set of signalgdna + Tp] the following condition
should be satisfied

a+To 1 m=n
Y)Y (1)) = f POV (O = 8y =
@ 0 m#n
But
a+To 1 - 1 -
(1), U (t — _eJZHT—Ot_e—jZT[T—Otdt
(Y (), Y (1)) ; N N
a+Tp e
— i 6]271( T )tdl
TO o
If n = m thene’> %" = 1 so that
1 a+To 1 a+Tp
(1), U (1)) = — dt = —t =1
WD), U (1)) TO/a =

Whenn # m then,

Jj2m (n—m)(a+To)/ To

1
=0

(Y (), Y (1)) = jZJT(n——m)ex

j2r(n—m)a/To

Thus, (v, (1), ¥, ()) = 8,,, Which proves thaty, () constitute an orthonormal set of signals.

Problem 2.37

1) Since(a — b)? > 0 we have that

h<—+—
w=573

with equality ifa = b. Let

1

2

Then substituting; /A for a andg; /B for b in the previous inequality we obtain
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. . Lo A _ _ . . . _ .
with equality 'fE- = » =k ora; = kp; for all i. Summing both sides froi= 1 ton we obtain

" Oliﬂi 1 " O[iz 1 " /812
D . = L
295 = 22w tal
1 « 2 1 « 2 1 2 1 2
242 ;“ t o2 ;’3 2az T op2
Thus,
1 n n n % n %
ap X <o Yan < || [2]
i=1 i=1 i=1 i=1

Equality holds ifo; = k8;, fori =1, ... , n.
2) The second equation is trivial sinpey;| = |x;||y/|. To see this writer; andy; in polar coordinates as

xi = pye’® andy; = pye/™. Then,lxyi| = oy pye’ @~ = pypy = lxillyil = lxilly/l. We tun
now to prove the first inequality. Let be any complex with real and imaginary componentsandz; ;

respectively. Then,
n n 2 n 2 n 2
Zzi,R +J ZZ:‘,I = (Z Zi,R) + (Z Zi,l)
i=1 i=1 i=1 i=1
n n
= Z Z(Zi,RZm,R + Zi1Zm,1)

i=1 m=1

Since(zi gZm.1 — Zm.rzi.1)> > 0 we obtain
2 2 2 2 2
(Zi.RZm.R + ZiaZm )™ < @i+ 20 )@+ Zt)

Using this inequality in the previous equation we get

n 2 n n
Z zi| = Z Z(Zi,RZm,R + Zi12Zm,1)
i=1 i=1 m=1
n n
2 2 3,2 2 i
= ZZ(Zi,R+Zi,1)2(Zrn,R +25,1)2
i=1 m=1

n n n 2
1 1 1
_ (Z<ZzR +zz,>z) (z@a,,{ +z3,,,>z) _ (z<zzR +zz,>z)
i=1 m=1 i=1

Thus

n 2 n 2 n n
2 243
zi| < (zir t2zip) or zil = ) lzil
i=1 i=1 i=1 i=1

The inequality now follows if we substitute = x;y’. Equality is obtained |;f—’; = Z’"—’; = ki 0rstz; =
Lzm = 0. ' .

33

©2005 Pearson Education, Inc., Upper Saddle river, NJ. All rights reserved. This material is protected under all copyright laws as
currectly exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the




3) From 2) we obtain

n 2 n
S x| =) Il
i=1 i=1

But |x;|, |y;| are real positive numbers so from 1)

n n % n
> lxillyil < {Z |x,-|2] [Zw}
i=1 i=1 i=1

Combining the two inequalities we get

i
2

n 2 n % n %
> iyt s[zw} [zw}
i=1 i=1 i=1

From part 1) equality holds #f; = kB; or |x;| = k|y;| and from part 2); y; = |x;y}|e/?. Therefore, the two
conditions are

|xi| = klyil
Z.Xi —Zyl =0

which imply that for alli, x;, = Ky; for some complex constat.

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier approach
is obtained if one considers the inequality

|x(t) + ay(t)| = 0, for all

Then

0 < / IX(t)+ay(t)|2dt=/ (x (1) + ay @) (x*(1) + o™ y*(1))dt

o]

_ / r(0) 2t + @ / ¥ (O)y(1)di +a” / XDy ()di + al? / ()P

oo oo -

The inequality is true foﬁx’oo x*()y@®)dr = 0. Suppose tha}ff"C><> x*()y(@)dr # 0 and set

[ 1x(@)]Pdt

[ x*(0)y(0)di
Then,
> [ 1x@)?dt)? [ |y(t)|%dt
05—/ Dt + =2 o
—00 o | [oo x@)y*(1)de|?
and

< [/w |x<t>|2dt}2 [/oo |y(r>|2dtr
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Equality holds ifx(¢) = —ay(z) a.e. for some complex.

Problem 2.38

1)
& = / )
00 N N
/ (x(z)—Za,-qﬁi(r)) SNOED I HON KL
—o i=1 j=1
00 N 00 N 00
= / x(@)dt =Y e / ¢i(Ox*()dt — Y o / ¢ (Dx(1)dt
- i=1 - j=1 -0
N N 00
+> ) ) / ¢ (D¢*dt
i=1 j=1 e
00 N N 00 N 00
/ x(OPdt + > el =D o / $i(Ox*(t)dt =Y / ¢7()x (1)dt
—o i=1 i=1 - j=1 —%

Completing the square in terms @f we obtain

00 N 2 N
62=/ ()Pt =y +y
-0 i=1 i=1

The first two terms are independentdd$ and the last term is always positive. Therefore the minimum is
achieved for

2
dt

N

x(0) = Y aii(0)
i=1

2

/OO o (t)x(t)dt

o — /OO ¢ (t)x(t)dt

o
o; :/ o (t)x(t)dt
—00
which causes the last term to vanish.

2) With this choice ofy;'s

2

/Oo ¢ (t)x(t)dt

00 N
e = / ()Pt =
- i=1

N

= [ wwfar- Yl
- i=1

Problem 2.39

1) Using Euler’s relation we have
x1(t) = co92rt) + cog4rt)

— %‘ (eiZm‘ +e—j2m‘ +ej4nt +e—j4nt)
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Therefore fom = £1, +2,x;, = % and for all other values of, x; , = 0.
2) Using Euler’s relation we have
x2(t) = co92rt) — cog4nt + 7 /3)
1, . . , .
E (6127'[1 + e—./ZJTt _ e/(471t+7r/3) _ e—/(4ﬂt+n/3))
1 1

. . 1 . ) 1 . )
EeIZHI + Ee—jZnt + Ee—j2n/3814m + _ej2ﬂ/3e—j47[[

from this we conclude that, 11 = § andx,> = x5 _, = 3¢7/2"/3, and for all other values of, x,,, = 0.

3) We havexs(t) = 2cog2rt) — sin(4rnt) = 2cog2nr) + cog4nt + /2). Using Euler’s relation as in
parts 1 and 2 we see the.; = 1 andx3, = x3_, = j, and for all other values of, x3, = 0.

4) The signal,(¢) is periodic with periodly = 2. Thus

1t o 1t .
Xapn = = / At)e /&2 dr = = / A(t)e /™ dt
2J)4 2)4

1[0 , 1t ,
= —f (t+1)e”””dt+—/ (—t 4+ Le /™"dt
2/, 2 Jo

1/ _. 1 0 .
= —| =t —Jjmnt _ = —jnmnt _J  —jmnt
2 (nn ¢ + nznze ) 4 + Znne
1(j _, 1 S B
_ = _tefjnnt efjnnt efjnnt
2 (Trn T o 0 T

1 1 jn —jmn 1
72n2 N 27[2”2(8]77 +e ™) =

. 0
J

-1
1

0

2.2 (1 — cogrn))

Whenn = 0 then
1t 1
= — A@)dt = =
X4,0 2/_1 (1) 5

Thus

1 <1
xa(t) = 5 + 2 ; W(l — coS7n)) coSmnt)

5) x5(t) = 1. It follows then thatts o = 1 andxs, = 0, Vn # 0.

6) The signal is periodic with periofh = 1. Thus

1 P 4 T
Xen = — e’e*fz’””dt — / €(7j27m+l)tdt
To Jo 0
_ 1 (—j2en+1yt "
- —j2nn+1 o —j2rn+1
e—1 e—1

= = 1+ j2
1—j2mn «/l+4712n2( +Jj2mn)
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7) The signal co®) is periodic with periodl, = 27 whereas co®.5¢) is periodic with periodl, = 0.8rx.
It follows then that cog§) + cog2.5¢) is periodic with periodl’ = 45r. The trigonometric Fourier series of
the even signal c@s) + co92.5¢) is

cost) + co92.5t) = Z o, cos(Zn%t)

n=1
- ia cos(=1)
- n=1 ’ 2

By equating the coefficients of c@g) of both sides we observe that = O for all n unlessn = 2,5 in
which caser, = as = 1. Hencex7, = x75 = % andxz, = O for all other values of.

8) The signalg(z) is periodic with periodly = 1. Forn =0

1

1
1
X8.0 =/ (=t + Ddt = (—=1° +1)
0 2

0 2
Forn #0
l .
Xgn = / (—t + 1)€_j271nldt
0
- _ -] tefj27rnt+ 1 €7j27mt 1+ -] €7j27mtl
27n 472n? o 2nn 0
_ _
N 2mrn
Thus,

() l+i ! sin 2rnt
X == — n
8 2 — n

9) The signalg(z) is periodic with periodly = 2T. We can writexg(z) as

o0 o0
xo(t) = Z 8(t —n2T) — Z §(t — T — n2T)
n=—0oo n=—o0
1 1
= — jrpt Jjrg@=T)
2T ¢ 2T D¢
n=—o00 n=—o0
o0
1 . . n
— Z ﬁ(l_ e—JJTn)eJZTIﬁt
n=—0o0

However, this is the Fourier series expansiongif) and we identifyxg , as

n even

- Sa-ey = - =1
wrTer Tt T " 2 nodd
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10) The signal is periodic with periof. Thus,

Xip = — iy (H)e 17T 4t
%
= —( 1) e —jemrtl = jann
t=0 T2
11) The signakg(z) is real even and periodic with peridgd = 5. Hencexs, = as,/2 or

1
Xon = 2fo f 4‘20 COS(27 fof) COS2n2 fot)di

)

= 5 / 4f1 COS(27 fo(1 + 2n)1)dt + fo / * cos2n fo(1 — 2n)n)dt

4f0 4fo

= ; sin(2r fo(1 + 2n)1) | 4f°

1
SiN2r fo(1 — 2n)t)|*°
2Lt 2n) IN(27 fo( n) )|ﬁ

1
tord—2n

=D 1 1
- T |:(1+2n)+(1—2n)i|

12) The signakg(t) = cos(anot) + | coq 27 fot)| is even and periodic with pericth = 1/f,. Itis equal to

2 cogq2x for) in the interval[— i A L 1and zero in the |nterve[4f 5 21, Thus
1

-
X9, = 2f0/ flo COiZ?Tfot) COQZﬂnfot)dl‘

“4f
_ fo/4'i COS(ano(l+n)t)dt+f0f  cos2r fo(1 — mynydr
4fo 4fo

T % - ah
= sin@2rfol+mn)| ™ + sin(27 fo(1 — n)r)| P
a5 4jo

27(1+n) 27(1—n)
= ;sinz(l-i— ))+;sin£1—
- w(l+n) 2 TS ZE=m

Thusxg , is zero for odd values of unless: = £1 in which caserg 11 = % Whenn is even g = 2/) then

_er
A Y

Problem 2.40

It follows directly from the uniqueness of the decomposition of a real signal in an even and odd part.
Nevertheless for a real periodic signal

ao = n . n
x(t) = > + Z [an COE(ZT[FOZ) + b, s|n(27-(?ot)]

n=1
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The even part of(¢) is

x(t) +x(—1)
2

1 o0
= = <a0 + Z an(COS(Zn%)t) + cos(—Zn%t))

X, (1)

2

n=1

. n . n
+b,(sin(2r Fot) + sin(—2r T()t)))

ap ad n
= S+ ;an cos(Zn?Ot)
The last is true since c@) is even so that c@8) + cog—6) = 2cosd whereas the oddness of &n
provides siti9) + sin(—6) = sin(@) — sin(d) = 0.
The odd part ofc(¢) is
_x(@) —x(=1)
Xo(1) = 2
— an Sin2r — 1)
n=1 TO

Problem 2.41
1) The signaly(r) = x(¢r — tp) is periodic with periodl’ = Ty.

1 a+To iom iy
Yu = = x(t —to)e T dt
TO [
a—1to+T¢

1 o+7To jon i
= — x(v)e 0 (v + to)dv

TO a—tg

a—to+To

o 1 _iop

= ¢ /7T O—[ x(v)e ' "du
TO a—tg
_iop

= x,e 4/2777010

where we used the change of variables r — 19

2) Fory(t) to be periodic there must exiBtsuch thay (1+mT) = y(1). Buty(t+T) = x(t+T)e /2 /o! gi27foT
so thaty(¢) is periodic if T = Ty (the period ofx(¢)) and foT = k for somek in Z. In this case

1 a+To

o= x(t)e T T I 210! gt
0Ja
1 a+Tp o k)
T x(0)e PR dt = x,
0Ja
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3) The signaly(¢) is periodic with periodl’ = Ty/«.

B+T o ﬁ+% o na
= _/ y(t)e I Tdr = x(at)e 7o' dy
To
1 [PetTo _iog
= — x(v)e /ZHTOUdvzxn
To

where we used the change of variables «r.

4)
1 a+To R
wo= g X' (e 171! 4t
0 Ja
1 g tOH_TO 1 @t+lo n . _jogly
= —x(t J To _— —27T— J To dt
TOX()e ) T /. (—J To)e
a+Tp -
= j27'r£— x(t)e_jznfotdt=j2n£xn
To To o To
Problem 2.42
1 a+To 1 a+Tp
— x@®)y*(dr = — yre _TT dt
& Bl ey
00 00 1 a+Tp jzn(n—m)t
DI LY R
n=—00 M=—00 To o
D SIDIETTI
n=—00 m=—0o0 n=—0o0
Problem 2.43

a) The signal is periodic with perio@. Thus

1 o
X, = —/ e_te_lzrt tdt / _(]2ﬂT+1)tdt

T
— _—ef(]ZTt +1)t - _ 1 [ef(j2nn+T) _ l]
T(j2n7+1) 0 jern+T
1 T — j2rnn
= —  [1-— -T =7 [1-— -T
2T ¢ AT gzl e

If we write x,, = % we obtain the trigonometric Fourier series expansion coefficients as

2T = 4n

L L
W= TT amrg O T2 4 4n2n2

. b= [1-e7"]
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b) The signal is periodic with periodZ2 Since the signal is odd we obtaig = 0. Forn # 0

T 2 n 1 T 2 n
X, = —-— x()e /Tt = — —e/artdy
! 2T |+ @) 2T | + T
1 r o
= ﬁ leijnTtdl
. 2 T
_ 1 E, N Y
27?2 2n2 r
2 2 2 2
— 1 JT €7j7m+ r — ¢ j7T)’l+JT ejnn_ r ejnn
2T2 2n2 n 2n2
- Ly
n

The trigonometric Fourier series expansion coefficients are:

2
ap =0, by =(D"—
mn

¢) The signal is periodic with periodf. Forn =0

1 (2
X0=?fgx(f)df=—

If n £ 0then
X, = —/ x()e 1T dt

2
3

= —/ eI T ’dt+—f e 1T dt
T T
2 7

— —/Zﬂ"t 2 +L —j2m gt 4

27m - 2n r

j _q i — i —jh
— eI _ oI | o= _ pmins

27n
1 sin( n) 1sino(n)
= _ =) = — —

n 2 2 2
Note thatx, = Ofornevenandy 1 = m(—l)’. The trigonometric Fourier series expansion coefficients
are:

=3 =0 2 —— (-1, ,b,=0,V
aO — 9 aZl — Y ) a21+1 (Zl + 1) yUn — Y n

d) The signal is periodic with perio#. Forn =0

1 T
= — dt = —
X0 T/o x(t)
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If n £ 0 then
1 (7 . 1353 ..
X, = —/ x(t)e’znTtdtz—/ Zte I Tt
T Jo T )y T

2T
13 . . 17 3
—j2n &t o —j2n &t
+—T/.£ e Tdt+—T/;3T( —Tt+3)e Tt

. 2
= ST i T e
T2\ 2nn 47 2p2

0
. 2 T
_i T te—jZn%t + r e—jZﬂ%t
T2\ 2nn 47r2p2 x
. 2r . T
+ J e*jZ?T%l‘ ° E JT —j2m gt
27n T T 27n 2z

. 3 [Cos(Zﬂn) 1
T 272p2 3

The trigonometric Fourier series expansion coefficients are:

4 3 2nn
apg = :_37 a, = [COiT) - 1]7 bn = O? Vn

2n2

€) The signal is periodic with perio@l. Since the signal is odeh = ag = 0. Forn £ 0
T
2

X, =

(N
x()dt = —f —e 1Tt
T J_

T
2

1
T J_r
2

T T
1 Z 4 : n 1 7 ; n
- ¢ —]ZNTtdt _/ —]27171dt
+T/_ T e + T : e

N

. 2 T
_ i .]T te—jZn%t + T e—jZH%t ¢
T2 \ 27tn 47722 1

T T
1/JT _,.\|"% 1/iT _.,.\I|2
_ L —j2ngt — | —j2nt
T (27me ) _ + T (27me )

' 2sin(%t j
v = 22D 1y - sinay)|

mn

~

N~

J
n
Forn even, sin¢3) = 0 andx, = nf—n The trigonometric Fourier series expansion coefficients are:

1 _
a, =0, Vn, bn:{_m n=2

2 2= _
oLt ranl n=2+1

f) The signal is periodic with periodt. Forn =0
T
3

x(t)dt = 1

_T
3

1
X0 = —
°T 7
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Forn #0
1 (° 3 - 1 (% 3 .
L = Zt42)e i T T + = — St +2)e 7Tt
x Cr+2e +TfO<T+>e

2
IT oy o T jong
2nn 42,2

; 2
_i ite—ﬂn%t + T e 2T
T2 \ 27n 4212

2 T

W~

T
3 0
T2

I~

wN @

0
2 jT _ .. |3
=J" =J 71271'7[
+T27me _%+T2ﬂne

3 1 COS(Znn) L 1 Sin(Znn)
2 3 n 3

—j2m it

0

7282

The trigonometric Fourier series expansion coefficients are:

3 /1 2n 1 . 2nn
ap=2, a,=2 [W <§ — COST)) + % Sln(?)] , b, =0, Vn

Problem 2.44

) H(f) = 101‘[(%). The system is bandlimited with bandwid# = 2. Thus at the output of the system
only the frequencies in the bafid 2, 2] will be present. The gain of the filter is 10 for &llin (-2, 2) and

5 at the edgeg = +2.

a) Since the period of the signal 15 = 1 we obtain

y@) = 10[a—20 + a1 cog2rt) + by Sin(2rt)]
+5[ay co922t) + b, Sin(2r 2t)]
With

_ Aan
1+ 4n2n?

2

- 1— -1
1+ 4r2n2 [1=er]

[1 - e—l], bn

an
we obtain

_ o 400 .
yit) = (1—e )[20+ cos(2m)+—1+4ﬂzsm(2m)

1+ 4n2

Sin(27r2t)i|

coq2r2t) + 40m
n S —
1+ 1672

N 10
1+ 1672
b) Since the period of the signal i§2= 2 anda,, = 0, for all n, we have

x(t) = Z b, sin(2n%t)
n=1
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The frequencie§ should satisfy5| < 2 orn < 4. Withb, = (—1)"*1% we obtain
20 . 2mt 0 .

y(t) = —sin(——)— —sin(2rt)

b4 2 21

+ 20 sin( 27T3t) 10 sin(2r 2t)
3n 2 T ag T

¢) The period of the signal i¥ = 1 and

2

— £ (-1, ,b,=0V
P "

ap=3, ,ay=0, ,ayi1=

Hence,
(1) = 3 + i co2r (2l + 1)t)
X =5 £ az+1

At the output of the channel only the frequencies for whith-2L < 2 will be present so that

3 2
y(t) = 10= + 10— co92r¢t)
2 b4

d) Sinceb, = 0 for all n, and the period of the signal & = 1, we have
ao 00
= — n 2
x(1) 5 + ,,E_la coS2rnt)

With ag = § anda, = —35[cog %) — 1] we obtain

20 30 2

yt) = —+ —2(cos(—) —1)co9q2rt)
3 T 3

15 A
+ﬁ(cos(?) — 1) cos272r)
20 45 45
= ? — ; co92nt) — @ cog 2 2t)
e) Witha, =0foralln, T =1 and
.S n=2
by = % (-1

rap Lt syl n=2+1

we obtain

y(t) = 10bysin(2rt) + 5b, sin(2mt2t)
2 2 1
= 10—+ —)sin(2rt) — 5— sin(2rt2t)
T T T
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f) Similarly with the other cases we obtain
31 2 1 2
y(#) = 10+10-2 [—2(— — cos(—n) + — sm(—n)] coq2rt)
1
+5- 2[ (— - COS’(—) +— sm(—)] cos( 2 2t)

3 3 3 3
= 10+20| — f cog2nt) + 10 f cos2m2t)
nz 27 42 4Ax

2) In general

Y0 = Y wHEG)STH

n=—oo

The DC component of the input signal and all frequencies higher than 4 will be cut off.

a) For this signall’ = 1 andx, = ~=Z" (1 — ¢~1). Thus,

1+4m2n2
v = iﬁ (= ey jre 4 1—;"1224 (= eIy( jre/e
%ﬁ(l— e H(—j)e!T¥ 4 %(1_ e (= j)eiZH
+iiiij; (1— e byjei2m %( N

4
2
= (1-¢Y Z —————(sin(2wnt) — 2mn cOS2rnt))
ot 1+4nn

b) With T = 2 andx, = -.-(—1)" we obtain

8 . -1 .
J n . jTn J n. _jmn
YO = Y (=D (e + Z (=" jel™
=17‘[ mn
8

-1
— ( ) /nnt + Z __( 1)nje/7'[nt
n=1 Tn n=-8

) In this case

=0, -1
X2 X241 = (21+1)( 1)
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Hence
1 . 1 .
() = Z(=j)elF 4+ —(=1)(—j)e!T™
T 3

jefj27T3l

1 .
+——(=Dje " +
- —3r

1 1
= ——sin(2rt) — — sin(2r 3t)
2n 6

3, (cog &) — 1). Thus

3
yo = ZZnnz
1

2
d) xo = 5 andx, = 57

= D(=je*™

n _ l)jejZJTnt

&) With x, = L. ((—1)" — sinq(%)) we obtain

4

y<r>=Z—<< 1" - sina5 )+ Z —<< 1" — sino> 5))

n=1 n——4

f) Working similarly with the other cases we obtain

‘73 /1 2 1
Yo = Z[m (2 s(ﬂ>)+—sm<—>} (—j)e/>™

n=1

+ Z [ ( 5(2”_”)) - ism(—)} Tl

Problem 2.45

Using Parseval's relation (Equation 2.2.38), we see that the power in the periodic signal is gvén by |x,, |2.
Since the signal has finite power

1 a+Top

- lx(1))?dt = K < 00
TO o

Thus,Y 22 |x.|?> = K < co. The lastimplies thatc,| — 0 asn — oo. To see this write

Z Jal? = Z la? + Z a2 +Z|xn

n=—oo n=—oo

Each of the previous terms is positive and bounded&byAssume thatx, |?> does not converge to zero as
goes to infinity and choose= 1. Then there exists a subsequence,0of,, , such that

| Xy, | > € =1, forng,>N>M
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Then
o0 o0
2 2 2
Dl =) P = P =00
n=M n=N ny

This contradicts our assumption tHat” ,, |x,|? is finite. Thus|x,|, and consequently,, should converge
to zero ast — oo.

Problem 2.46
1) Using the Fourier transform pair

o] F 2a 2 1

e - =
a2+ 2nf)2  A4n? %22 + f2

and the duality property of the Fourier transfor( ) = F[x(t)] = x(—f) = F[X(¢)] we obtain

20 F 1 R
4m? &+ 12 -

With @ = 2 we get the desired result

1 —2r| f|
]:|:1+t2:| =Te

2)
Flx@®)] = FI@¢ —3) + I + 3]
= sina f)e /3 4 sing f)e/>/3
2sind f) cog273f)
3)

Flx@®)] = FIAQRt+3)+ AGBt —2)]
= FIAQ( + g)) + AG(r - g)]

= }sincz(f

. 1 o f
JN,inf3 _S|n(’2 7]27Tf§
5 2)e + 3 (%)e

3

4) F[T1(t/4)] = 4sind4f), henceF[4I1(t/4)] = 16sing4f). Using modulation property of FT we have
FlAT1(t /4) co92r for)] = 8SINQA(f — fo)) + 8sind4(f + fo)).

5) We use a combination of scaling, time shift, and modulation properties to obtain the /ef4iL. (:32)] =
16e~/4fsing4f) and

F [41‘[ <#) cos(anot)} = 8e /U sindA(f — fo)) + 8e T Osind4(f + fo))
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6) T(f) = FIsinC(t)] = Flsin&(r)sinat)] = A(f) » T1(f). But

o]

3 F+3
H(f)*A(f)=/ H(Q)A(f—@)d@:/ A(f—9)d9=/ Av)dv
f 1

1
—00 -3

2

For f§—g=>T(f):0

f+3 1

For  —o<f< l:>T<f>—/f+%<+1>d — G| = afrafs
271 =72 - ), PRy Y T Tl Ty
1 1 0 I+3
For __<f§_:T(f)=/ (v—i—l)dv—i—f (—=v + Ddv
2 2 = 0
1 0 1 f+% 3
=GP +y)| (54| =P+
2 f,l 2 0 4
2
1 3 ! 1, ! 1, 3, 9
For —<f§—=>T(f):/ (vt Ddv= (v +v) =/"-5f+g
2 2 ! 2 ;1 20 278
3
For §<f:>T(f)=0
Thus,
0 f=-3
I2+3r+% -3<r=-}
T(f)=\ —f*+3% —3</=3
AR TR I RS
0 i<
7)

. 1 ' 1 1
Flrsino(n)] = = Flsin(ro)] = % [S(f +3)—8(f - E)]

The same result is obtain if we recognize that multiplicatiorn bgsults in differentiation in the frequency
domain. Thus

}‘tsinc—jdl'[ _J ) 1 8 L
[ ]_Eﬁ (f)—g[(f—i-é)— (f_é)]

8)

id (1 1
Fltcox2r for)] = 2rdf <§5(f—fo)+§5(f+fo))

= L~ f+8 + o)
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9)

e~ costp)] = > 2 + 2
S22+ @n(f = £0? a2+ @+ 4)?
10)
Flte ™" cogpt)] = Jda il 4 o
2w df \o?+@u(f - 5))? o+ @u(f + £))?
I |: 2om (f — %) L 2am (f + %) i|
(@ + @r(f — £92)° (@2 + @r(f +£)?)°

Problem 2.47

x1(t) = —x(t)+x(t) cog20007¢)+x(¢) (1 + co9600071)) orx1(r) = x(t) cog20007¢)+x(¢) cog60007+¢).
Using modulation property, we havé (f) = X (f —1000 + X (f +1000 + X (f —3000 + 3 X (f +
3000. The plot is given below:

1000 3000

Problem 2.48

o0

FIEG0+ 3 48—y = / Yoo+ rse— Yyeszmg
2 2 2 o 2 2 2

1 . .
= §(e—-/”f + e ™) = coqnf)
Using the duality property of the Fourier transform:

X(f)=Flx)] = x(f) = FIX(-1)]
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we obtain
1 1 1
Flcog—mt)] = Flcogwt)] = E(S(f + 5) +4(f — E))

Note that sit7) = coS(wt + %). Thus

. 1 1 1 1 .
Flsinrn] = Fleogn(t+ 501 = 56(f +5) +8(f - §>>ef"f

= ZeTI(f 4 )+ e (S - )
- 2° 2’ T 2° 2
j

_ s 1 j8 1
= 5 (f+§)—§ (f_é)

Problem 2.49
a) We can writex (1) asx(r) = 2I1(5) — 2A(5). Then

Flx(t)] = f[zn(i)] _ ]:[ZA(;)] — 8sina4f) — 4sin@(2f)

b)

x(1) = 2n(%) — A(t) = Flx(1)] = 8Sina4f) — sin@(f)

o0 0 1
X(f) = / x()e I dr = / (t + De /2 1dr + / (t — Ve /&1 ds
— 1 0

00 —

j 1 —j2nft
= — J
(2nf " 4ﬂ2f2)e
j 1 —j2nft
S J 47,
" <2nf " 4ﬂ2f2> ‘

- nf—fu — sin(zf))

0

. 0
J —j2nft

+ e’

1 2nf -1

1 1

_ I e
o 2nf

0

d) We can writex(¢) asx(t) = A(t +1) — A(t — 1). Thus

X(f) = sin@(f)e!Z —sin@(fe /¥ = 2jsin@(f) sin(2r f)

e) We can writex(r) asx(t) = At +1) + A(@) + A(r — 1). Hence,

X(f) =sin@(f)A+ e/ 4+ 772y = sind(f)(1+ 2 cog2n f)
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f) We can writex(¢) as

x(t) = [H <2fo(t — i)) —1II <2f0(t — i))] Sin(2rw fot)

4 fo 4fo

Then

I B O B W S Sy B N 2

X = [Zfosmc<2fo>e ! 2fosmc<2fo))e f]
sZG(f + o) = 8(F + fo))

L (Frfoo (AR L (f=f\o (. f—fo

B 2fosmc( 2fo >sm<n 2fo ) 2fosmc( 2fo )sm(n 2fo )
Problem 2.50

(Convolution theorem:)
Flx@) > y@)] = FlxOIF[yO] = X(HY(f)
Thus
sind(7) xsind7r) = FF[sinar) » sindt)]]
FUF[sinat)] - Flsindr)]]
FHINHIN] = F HI)]
= sindr)

Problem 2.51

o0

Flx)yn)] = / x(O)y(t)e 2 ds

e¢]

= / ” < / ” X(@)eﬂ"%m) y(t)e /7 4t
= / h X () ( / N y(t)e /7 _9)’dt> o

= / XOY(f—0)do = X(f)*Y(f)

Problem 2.52
1) Clearly

o0 o0

x1(t + kTp) = Z x(t +kTo — nTo) = Z x(t — (n — k)Tp)

n=—oo n=—oo
(0.¢]

= D x(t—mTo) =xi(1)

m=—0oQ
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where we used the change of variakle= n — k.

2)
x1(t) = x(1) * Z 8(t —nTy)
This is because
/OO x(1) Z 8(t — 1t —nTo)dt = Z /Oo x(1)8(t — T — nTp)dt = Z x(t — nTp)
3)
Flxa®)] = Flx@®)* Y 8t —nTo)l = Flx()IFL Y 8(t —nTo)l

- X(H= i S -1y = = i X(2)8(f — =)

- TO n=—00 TO - TO n=—00 To To
Problem 2.53

1) By Parseval’s theorem

/oo sinc(t)dt = foo siné(1)siné(t)dt = /oo AHOT(HHdf

00 —

where
T(f) = F[sinc(t)] = Fsiné(t)sindr)] = I1(f) * A(f)
But

9]

: f+3
H(f)*A(f):/ H(@)A(f—@)d@:/ A(f—@)d@:/ A

1
0 -3 -3

For fs—:—;:>T(f)=0

P01, 3 9
=2/ "2 s

3 1 I+3 1,
For ——<f§——=>T(f)=/ W+Dhav =GP+ =3
— -1

2 2 L

1 1 0 f+3
For ——<f§§=>T(f):/ (v+1)dv+/ (—v+ Ddv
0

2 f—%
1 0 1 I+3 3
=GV 4| + (=5 +v)| =P+
2 1 2 o 4
2
1 3 ! 1, ! 1, 3, 9
For Z<f<-=T(f)= (—v4+Ddv=(—2v>+v)| =Zf2-"f+-
2 2 1 2 1 2 27 "8
3
For §<f:>T(f):0
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Thus,

0 f=<-3

3o de<rsod
T(f) = fA+3 —3</f<3

1,2 3 9 1 3

Tt <=3

0 g<f

Hence,

00 21, 3. 9 o . 3
/ AHT(Hdf = /1 GF+ 5+ DU+ df + [ (= D + D

_1
2

- /%23 o
+f0< R N

_ 41
64
2)
/ e Y'sindt)dt = / e “u_1(t)sindt)dt
0 —00
1
= [ = [
) o+ j2rnf o+ jonf
1 . 1/2 o+ jr 1 T
= —1In 2 =——1In =—tan " —
j2m (0t ”f)|*1/2 j2m (a—jn’) T o
3)
/ e “siné()dr = / e “u_1(t)siné(t)dt
0 —00
= [ ausar
 Jwa+j2nf
0 1 1 1
R / —SE2
o+ jnf o atjnf
But [ 5=dx = 5 — 7 In(a + bx) so that
o0 f o 0
/ e ¥siné(t)dt = (== + — In(a + j27f))
0 jomr  Am? 4
f |« . ol o
—(o+ sz Ine@+j27f)| + = In(e+ j2rf)
j2r  A4m o Jj2m 1
= &) b =t
o o 2n2 o 1 4n?
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4)

/ooe“” cogpBt)ydt = /OO e “u_q(t) cog Bt)dt
0 —

9]

= L oo—l ) B ) B dt
_ 5/_wa+j2ﬂf((f—5>+ (f + 40
_1 1 1 o

2a+j,8+a—jﬂ]=oc2+ﬂ2

Problem 2.54

Using the convolution theorem we obtain

1
Y(f) = X(f)H(f)z(a+j2nf)(ﬂ+j2nf)
1 1 1 1
T B-watjf B-wp+jonf
Thus
YO =FHY(NH = G-l e P u_(1)
If « = BthenX(f) = H(f) = m In this case

_ 1 _ 1 1 27 _ 4 ,—at
y@) =F T Y(Hl=F (7 T j2nf) | =te ™ u_1(r)

The signal is of the energy-type with energy content

T T
_ : 2 2 L 2 1 —at __ ,—pt\2
Beo= i [ oRar= gim 7o e e

T/2 T/2
— Jim —1 |:—ie_2°”/ ! / 2

1 2
0 2p 0 (a+B)
_1 11 2 1

)

T/2
0

R + - e
B—-—a)22a 28 a+p 20 (a + B)
Problem 2.55
x(t) a<t<a+T
xa(t) =
0 otherwise
Thus
o . a+To )
Xo(f) = / Xo()e 77 dr = / x(t)e 1% dt
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EvaluatingX, (f) for f = % we obtain
a+To

n o
Xo(7) = / x(t)e 77" dr = Tox,
TO a

wherex, are the coefficients in the Fourier series expansion(of. ThusXa(%o) is independent of the
choice ofa.

Problem 2.56
n;mx(t—nTs) = x(t)*n;OOS(t—nTs):Tisx(t)*n;me-/z”ﬁt

= Irxon i 5(f — )

T = T,

— 1]:—1 ix n 5(f_£)

T =\ T,

— i = X 1 ejZHTLSt

Iy, — T;

If we setr = 0 in the previous relation we obtain Poisson’s sum formula

i x(—nT;) = i X(st)=T% i X(%)

n=—oo m=—0oQ n=—oo

Problem 2.57
1) We know that

Applying Poisson’s sum formula with; = 1 we obtain

2 M=) g

n=—oo n=—oo

2) Use the Fourier transform pdit(r) — singf) in the Poisson’s sum formula withi = K. Then

oo o0

Y N@K) :% 3 sino(%)

n=—0o n=—0oo

Butli(nK) = 1 forn = 0 andlI(nK) = O for |n| > 1 andK € {1, 2,...}. Thus the left side of the
previous relation reduces to 1 and

K= i sino(%)

n=—0oo
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3) Use the Fourier transform pafr(r) — sin(f) in the Poisson’s sum formula with, = K. Then

oo oo

Y AGmK) :% 3 sin@(%)

n=—0oo n=—0oo

Reasoning as before we see thaf. _ A(nK) = 1 since fork € {1,2,...}

1 n=0

A(nK) = )
0 otherwise

Thus,K = Y20 siné(%)

n=—oo

Problem 2.58
Let H(f) be the Fourier transform @f(¢). Then

1
H(f)Fle™ u1(0)] = FI§()) = H(f)aJr—.

T =1= H(f)=a+ j2rf

The response of the systemdt*’ coSB1)u_1(¢) is

y(t) = FHH(f)Fle™ cogBryu_1(1)]]

But
_ 1 _ 1 »
Fle ™ cosBu_1(t)] = ]-"[ze “y_y(t)elP + 5e Uy 1 (t)e P
_ 1 L,
C 2latjzn(f-L)  a+jzn(f+ L)
so that
o+ j2nf 1 1
Y =Fly@®)] = +
(=700l 2 Lz+j27r(f— ) a+j2n(f+£)}

Using the linearity property of the Fourier transform, the Convolution theorem and the faét(ﬂ)aﬁ
j2m f we obtain

y(t) = ae * cogBriu_1(t) + (e * codB)u_1(1)) x 8'(1)

e ¥ cogBt)s(t) — Be ¥ sin(Bt)u_1(t)
= 8(1) — Be " sin(Br)u_1(r)

Problem 2.59

1) Using the result of Problem 2.50 we have sifg sin(r) = sindz).
2)

y() = x(@)*h(t) =x(t)* () +8'(t)
= x(t)—i—%x(t)
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With x () = e~*"l we obtainy(t) = e=*I"l — ae=*I"Isgn(t).

3)
y() = /oo h(t)x( — t)dr
= / e e P = e‘ﬂ’/ e @ Prge
0 0
If a=Pp=y(@t)=te “u_1(t)
a#B=yit)=eP e~ @y ) = [e_m — 6’_’3’] u_1(t)
_ o _
4)
y() = /memﬁnm4@y*W%Lm—rmf
= f e " cogyr)e P dr = e_ﬂ’/ P97 cogy1)dt
0 0
t e Pt
fa=8=ylt) = e_ﬁ"/ coSyt)dtu_1(t) = sin(yHu_1(¢)
0
fa=B8=y@t) = e# / P~ cogyr)dtu_1(1)
0
—pt t
= @:fﬁa:;«ﬁ—aﬂm$n)+y§myﬂnw””54ﬂn
e*al .
= m ((B —a)cogyt) +y sin(yr)) u_1(¢)
e P (B—a)
TBwrr
5)

o0 t
y(t) = / e e U=y 1t — T)dT = / e tle=Pl=D gy
—0oQ

—00

Consider first the case that# 8. Then

Ift <0= y(t)

t
eﬁt/ e(ﬁJra)rdr — 1 eozt
oo o+ B

0 t
If t <0 = y([) = / eare_ﬁ(t_f)d-[ +/ e—a‘[e—ﬂ(t—r)dl_

o0 0
—Bt 0 —Bt t
_ & erpr| L& o
o+ B oo B 0
20e Pt e ¥

oo pa
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Thus

1 t
yoy={ =, =0
—Frz—i-ﬁ_a t>0

In the case oft = 8
—at 20t 1 at
ft<0=y(t) = e e dr=2—e

0 t
fr<0=y@t) = / e e dt +/ e "dr
- 0

o
e 0
— eZar + tefat
20 o
1
— e tle=%
[Za +1le
6) Using the convolution theorem we obtain
0 2 <1/l

Y(H=THAS =1 f+1 —3<f=0
—f+1 0<f<1

Thus
1
2 . .
o = Frin= [ vine s
-2
0 , 2 .
= | (f+De/Zdf + / (—f + D& df
-1 0
2
1 . 1 0 o
— jenft j2nft jerft
(jZntfe + 4n2i2¢ ) -1 jZm‘e 1
1 f jenft + 1 j2nft % jenft %
-\ ——=—Je —F—e —e
j2nt 4r2t? o J2ut 0
1 1
= 1-— — si
2712:2[ cogrt)] + o sin(t)
Problem 2.60
Letthe response of the LTI system/@) with Fourier transfornH (/). Then, from the convolution theorem
we obtain

Y(f)=H(HX(f) = A(f) =TI(HH(S)

However, this relation cannot hold sinfH f) = 0 for% < |f|whereasA(f) #0forl< |f| < 1/2.
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Problem 2.61

1) No. The inputl1(¢) has a spectrum with zeros at frequencfes &, (k # 0, k € Z) and the information

about the spectrum of the system at those frequencies will not be present at the output. The spectrum of the
signal cos2rt) consists of two impulses gt = +1 but we do not know the response of the system at these
frequencies.

2)
ha@) *T1(t) = TI() *1(t) = A(r)
ho(t) «T1(t) = (I1(t) +cog2mt)) » I1(¢)
= A®)+ %.7—"‘1 [8(f — DsInG(f) + 8(f + Dsinc(f)]

= AQ)+ %]—'1 [8(f = Dsin¢(D) + 8(f + Dsiné(-1)]
= A()

Thus both signals are candidates for the impulse response of the system.

3) Flu_1(t)] = 38(f) + ﬁ Thus the system has a nonzero spectrum for eyeagd all the frequencies

of the system will be excited by this input[e “u_1(t)] = ﬁ Again the spectrum is nonzero for all
f and the response to this signal uniquely determines the system. In general the spectrum of the input must
not vanish at any frequency. In this case the influence of the system will be present at the output for every

frequency.

Problem 2.62

o . 1 jorft 1 —j2nf
FlAsIn@2r for +60)] = —jsgn(f)A —2—j5(f + fo)e'" 7 2o + 2—j5(f — fo)e %o

A . 6 _iox 0
= S [son—fos(s + fore™ % — sgri—fo)s(f — fore 7|

A . o
= -3 [S(f + fo)e’* 7+ 5(f — fo)e*ﬂ”fm]
= —AF[co92r fot + 0)]

Thus, A Sin(27 for + 6) = —A coS(27 for + 6)

Problem 2.63

Taking the Fourier transform @fizfot we obtain

Flei2mio] = —jsgr £)8(f — fo) = —jSAfo)8(f — fo)
Thus,

eI = F SO fo)8(f — fo)l = —jSgrt fo)e’ ™

59

©2005 Pearson Education, Inc., Upper Saddle river, NJ. All rights reserved. This material is protected under all copyright laws as
currectly exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the




Problem 2.64

d ——
f{axm} = Flx()»8(0)] = —jsgn(f)FLx(r) »8'(1)]

= —jsgn(f)j2r fX(f) =2nfsgn(f)X(f)
= 2n|fIX(f)

Problem 2.65
We need to prove that (1) = (£ (1))’
FI'D] = Flx@) *8()] = —jSrf)FLx () 8 ()] = — jsgn )X () j2rn f
= FlxM]j2nf = Fl(x ()]

Taking the inverse Fourier transform of both sides of the previous relation we otr/l(;bn,—_ x(@))

Problem 2.66
1) The spectrum of the output signal) is the product ofX ( f) andH (f). Thus,
Y(f) = H(HX() = X()A(fo)e! "I D=

y(¢) is a narrowband signal centered at frequengies + f;. To obtain the lowpass equivalent signal we
have to shift the spectrum (positive band)ygf) to the right by f,. Hence,

Yi(f) =u(f + f) X (f + f) A(fo)e! COHT D= = X, () A( fo)e! I Dlr=r)
2) Taking the inverse Fourier transform of the previous relation, we obtain

wity = F [Xl(f)A(fo)ej9(fo)ejf9’(f)|f=f0]

1 /
= A(fo)xi(t + ZQ (=1
With y(1) = Re[y;(t)e/Z/0'] andx; (1) = V. (t)e/®<® we get
y() = Rey/(1)e/*]

1 e o
= Re[A(fo)xz(t + 2—9/(f)|f=f0)€J0('fO)e'/2nfot:|
n

1 _ ‘ /
= RG[A(fO) V(@ + o 9/(f)|f=fo)612nfotej(:)x(t+%9 (f)|ff0)i|
JT

1
= A(fo)Vi(t —t,) coL2n fot + 0(fo) + O, (r + ZG/(f M=)

0 ( fo)
27 fo

1
= A(fo)Vi(t —15) COX2n fo(t — 1) + O, (1 + 59’(f)lf:fo))

1
= A(fo) Vi (t —tg) COX2r fo(r + )+ O, + 59/(f)|f:fo))
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where

1000 160

2n fo 2 f

o= =50 (Dl 1=

f=rfo

3) t, can be considered as a time lag of the envelope of the signal, whgrisdbe time corresponding
to a phase delay o};%

Problem 2.67
1) We can writeH, (/) as follows

cosd — jsind f >0
Hy(f)=1 0O f =0 =cos) — jsgnf)sing
cosf + jsind f <0

Thus,
ho(t) = F Y Hy(f)] = cosds(r) + % sing
2)
xg(t) = x@)xhg(t) = x() * (COSHS(¢) + % sing)
= cosOx(t) *»8(t) + sin@% * x(1)
= C€0SHx(t) + Sindx(r)
3)

/ Ixo(H)|2dt = / | costx(r) + sinOx(1)|%dt

oo oo

= co§9/ |x(t)|2dt—|—sin29/ |X(1)|°dt

o0 oo

o0 o
+ cosf sind / x(®)x*(r)dr + cosh sind / x*(®)x(t)dt
o _

oo

But (% |x(1)|%dt = [ |X(1)|’dt = E, and [ x(1)%*(1)dt = O sincex(¢) andi(r) are orthogonal.
Thus,

E,, = E.(CO$ 0 +sin*0) = E,
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