
Solution to Chapter 5 Problems

Problem 5.1

Let us denote byrn (bn) the event of drawing a red (black) ball with numbern. Then

1. E1 = {r2, r4, b2}
2. E2 = {r2, r3, r4}
3. E3 = {r1, r2, b1, b2}
4. E4 = {r1, r2, r4, b1, b2}
5. E5 = {r2, r4, b2} ∪ [{r2, r3, r4} ∩ {r1, r2, b1, b2}]

= {r2, r4, b2} ∪ {r2} = {r2, r4, b2}

Problem 5.2

Solution:
Since the seven balls equally likely to be drawn, the probability of each eventEi is proportional to its
cardinality.

P(E1) = 3

7
, P (E2) = 3

7
, P (E3) = 4

7
, P (E4) = 5

7
, P (E5) = 3

7

Problem 5.3

Solution:
Let us denote byX the event that a car is of brand X, and byR the event that a car needs repair during its
first year of purchase. Then
1)

P(R) = P(A,R)+ P(B,R)+ P(C,R)
= P(R|A)P (A)+ P(R|B)P (B)+ P(R|C)P (C)
= 5

100

20

100
+ 10

100

30

100
+ 15

100

50

100

= 11.5

100

2)

P(A|R) = P(A,R)

P (R)
= P(R|A)P (A)

P (R)
= .05.20

.115
= .087
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Problem 5.4

Solution:
If two events are mutually exclusive (disjoint) thenP(A∪B) = P(A)∪P(B)which implies thatP(A∩B) =
0. If the events are independent thenP(A∩B) = P(A)∩P(B). Combining these two conditions we obtain
that two disjoint events are independent if

P(A ∩ B) = P(A)P (B) = 0

Thus, at least on of the events should be of zero probability.

Problem 5.5

Let us denote bynS the event thatn was produced by the source and sent over the channel, and bynC the
event thatn was observed at the output of the channel. Then
1)

P(1C) = P(1C|1S)P (1S)+ P(1C|0C)P (0C)
= .8 · .7+ .2 · .3 = .62

where we have used the fact thatP(1S) = .7,P(0C) = .3,P(1C|0C) = .2 andP(1C|1S) = 1− .2 = .8
2)

P(1S|1C) = P(1C,1S)

P (1C)
= P(1C|1S)P (1S)

P (1C)
= .8 · .7

.62
= .9032

Problem 5.6

1)X can take four different values. 0, if no head shows up, 1, if only one head shows up in the four flips of
the coin, 2, for two heads and 3 if the outcome of each flip is head.
2)X follows the binomial distribution withn = 3. Thus

P(X = k) =


(

3

k

)
pk(1− p)3−k for 0 ≤ k ≤ 3

0 otherwise

3)

FX(k) =
k∑

m=0

(
3

m

)
pm(1− p)3−m

Hence

FX(k) =



0 k < 0

(1− p)3 k = 0

(1− p)3 + 3p(1− p)2 k = 1

(1− p)3 + 3p(1− p)2 + 3p2(1− p) k = 2

(1− p)3 + 3p(1− p)2 + 3p2(1− p)+ p3 = 1 k = 3

1 k > 3

98



. . . . . . . . . . . . .

. . . . . . . . .
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CDF
1

(1−p)3

43210-1

4)

P(X > 1) =
3∑
k=2

(
3

k

)
pk(1− p)3−k = 3p2(1− p)+ (1− p)3

Problem 5.7

1) The random variablesX andY follow the binomial distribution withn = 4 andp = 1/4 and 1/2
respectively. Thus

P(X = 0) =
(

4

0

)(
1

4

)0(3

4

)4

= 34

28
P(Y = 0) =

(
4

0

)(
1

2

)4

= 1

24

P(X = 1) =
(

4

1

)(
1

4

)1(3

4

)3

= 334

28
P(Y = 1) =

(
4

1

)(
1

2

)4

= 4

24

P(X = 2) =
(

4

2

)(
1

4

)2(3

4

)2

= 332

28
P(Y = 2) =

(
4

2

)(
1

2

)4

= 6

24

P(X = 3) =
(

4

3

)(
1

4

)3(3

4

)1

= 3 · 4

28
P(Y = 3) =

(
4

3

)(
1

2

)4

= 4

24

P(X = 4) =
(

4

4

)(
1

4

)4(3

4

)0

= 1

28
P(Y = 4) =

(
4

4

)(
1

2

)4

= 1

24

SinceX andY are independent we have

P(X = Y = 2) = P(X = 2)P (Y = 2) = 332

28

6

24
= 81

1024

2)

P(X = Y ) = P(X = 0)P (Y = 0)+ P(X = 1)P (Y = 1)+ P(X = 2)P (Y = 2)

+P(X = 3)P (Y = 3)+ P(X = 4)P (Y = 4)

= 34

212
+ 33 · 42

212
+ 34 · 22

212
+ 3 · 42

212
+ 1

212
= 886

4096
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3)

P(X > Y) = P(Y = 0) [P(X = 1)+ P(X = 2)+ P(X = 3)+ P(X = 4)] +
P(Y = 1) [P(X = 2)+ P(X = 3)+ P(X = 4)] +
P(Y = 2) [P(X = 3)+ P(X = 4)] +
P(Y = 3) [P(X = 4)]

= 535

4096

4) In generalP(X + Y ≤ 5) = ∑5
l=0

∑l
m=0P(X = l − m)P (Y = m). However it is easier to find

P(X+Y ≤ 5) throughP(X+Y ≤ 5) = 1−P(X+Y > 5)because fewer terms are involved in the calculation
of the probabilityP(X + Y > 5). Note also thatP(X + Y > 5|X = 0) = P(X + Y > 5|X = 1) = 0.

P(X + Y > 5) = P(X = 2)P (Y = 4)+ P(X = 3)[P(Y = 3)+ P(Y = 4)] +
P(X = 4)[P(Y = 2)+ P(Y = 3)+ P(Y = 4)]

= 125

4096

Hence,P(X + Y ≤ 5) = 1− P(X + Y > 5) = 1− 125
4096

Problem 5.8

1) Since limx→∞ FX(x) = 1 andFX(x) = 1 for all x ≥ 1 we obtainK = 1.

2) The random variable is of the mixed-type since there is a discontinuity atx = 1. limε→0FX(1− ε) = 1/2
whereas limε→0FX(1+ ε) = 1

3)

P(
1

2
< X ≤ 1) = FX(1)− FX(1

2
) = 1− 1

4
= 3

4

4)

P(
1

2
< X < 1) = FX(1

−)− FX(1
2
) = 1

2
− 1

4
= 1

4

5)

P(X > 2) = 1− P(X ≤ 2) = 1− FX(2) = 1− 1 = 0

Problem 5.9

1)
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x < −1 ⇒ FX(x) = 0

−1 ≤ x ≤ 0 ⇒ FX(x) =
∫ x

−1
(v + 1)dv = (

1

2
v2 + v)

∣∣∣∣x−1

= 1

2
x2 + x + 1

2

0 ≤ x ≤ 1 ⇒ FX(x) =
∫ 0

−1
(v + 1)dv +

∫ x

0
(−v + 1)dv = −1

2
x2 + x + 1

2
1 ≤ x ⇒ FX(x) = 1

2)

p(X >
1

2
) = 1− FX(1

2
) = 1− 7

8
= 1

8

and

p(X > 0
∣∣X <

1

2
) = p(X > 0, X < 1

2)

p(X < 1
2)

= FX(
1
2)− FX(0)

1− p(X > 1
2)

= 3

7

3) We find first the CDF

FX(x
∣∣X >

1

2
) = p(X ≤ x

∣∣X >
1

2
) = p(X ≤ x, X > 1

2)

p(X > 1
2)

If x ≤ 1
2 thenp(X ≤ x

∣∣X > 1
2) = 0 since the eventsE1 = {X ≤ 1

2} andE1 = {X > 1
2} are disjoint. If

x > 1
2 thenp(X ≤ x

∣∣X > 1
2) = FX(x)− FX(1

2) so that

FX(x
∣∣X >

1

2
) = FX(x)− FX(1

2)

1− FX(1
2)

Differentiating this equation with respect tox we obtain

fX(x
∣∣X >

1

2
) =


fX(x)

1−FX( 1
2 )

x > 1
2

0 x ≤ 1
2

4)

E[X∣∣X > 1/2] =
∫ ∞

−∞
xfX(x|X > 1/2)dx

= 1

1− FX(1/2)
∫ ∞

1
2

xfX(x)dx

= 8
∫ ∞

1
2

x(−x + 1)dx = 8(−1

3
x3 + 1

2
x2)

∣∣∣∣1
1
2

= 2

3
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Problem 5.10

In general, ifX is a Gaussian RV with meanm and varianceσ 2, we have,

P(X > α) = Q

(
α −m
σ

)
Therefore,

P(X > 7) = Q

(
7− 4

3

)
= Q(1) = 0.158

and using the relationP(0< X < 9) = P(X > 0)− P(X > 9), we have

P(0< X < 9) = Q

(
0− 4

3

)
−Q

(
9− 4

3

)
= 1−Q(1.33)−Q(1.66) ≈ 0.858

Problem 5.11

1) The random variableX is Gaussian with zero mean and varianceσ 2 = 10−8. ThusP(X > x) = Q( x
σ
)

and

P(X > 10−4) = Q

(
10−4

10−4

)
= Q(1) = .159

P(X > 4× 10−4) = Q

(
4× 10−4

10−4

)
= Q(4) = 3.17× 10−5

P(−2× 10−4 < X ≤ 10−4) = 1−Q(1)−Q(2) = .8182

2)

P(X > 10−4
∣∣X > 0) = P(X > 10−4, X > 0)

P (X > 0)
= P(X > 10−4)

P (X > 0)
= .159

.5
= .318

3) y = g(x) = xu(x). ClearlyfY (y) = 0 andFY (y) = 0 for y < 0. If y > 0, then the equationy = xu(x)

has a unique solutionx1 = y. Hence,FY (y) = FX(y) andfY (y) = fX(y) for y > 0. FY (y) is discontinuous
aty = 0 and the jump of the discontinuity equalsFX(0).

FY (0
+)− FY (0−) = FX(0) = 1

2

In summary the PDFfY (y) equals

fY (y) = fX(y)u(y)+ 1

2
δ(y)

The general expression for findingfY (y) can not be used becauseg(x) is constant for some interval so that
there is an uncountable number of solutions forx in this interval.
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4)

E[Y ] =
∫ ∞

−∞
yfY (y)dy

=
∫ ∞

−∞
y

[
fX(y)u(y)+ 1

2
δ(y)

]
dy

= 1√
2πσ 2

∫ ∞

0
ye

− y2

2σ2 dy = σ√
2π

5) y = g(x) = |x|. For a giveny > 0 there are two solutions to the equationy = g(x) = |x|, that is
x1,2 = ±y. Hence fory > 0

fY (y) = fX(x1)

|sgn(x1)| +
fX(x2)

|sgn(x2)| = fX(y)+ fX(−y)

= 2√
2πσ 2

e
− y2

2σ2

Fory < 0 there are no solutions to the equationy = |x| andfY (y) = 0.

E[Y ] = 2√
2πσ 2

∫ ∞

0
ye

− y2

2σ2 dy = 2σ√
2π

Problem 5.12

1) y = g(x) = ax2. Assume without loss of generality thata > 0. Then, ify < 0 the equationy = ax2

has no real solutions andfY (y) = 0. If y > 0 there are two solutions to the system, namelyx1,2 = √
y/a.

Hence,

fY (y) = fX(x1)

|g′(x1)| +
fX(x2)

|g′(x2)|
= fX(

√
y/a)

2a
√
y/a

+ fX(−√y/a)
2a
√
y/a

= 1
√
ay
√

2πσ 2
e
− y

2aσ2

2) The equationy = g(x) has no solutions ify < −b. ThusFY (y) andfY (y) are zero fory < −b. If
−b ≤ y ≤ b, then for a fixedy, g(x) < y if x < y; henceFY (y) = FX(y). If y > b theng(x) ≤ b < y for
everyx; henceFY (y) = 1. At the pointsy = ±b, FY (y) is discontinuous and the discontinuities equal to

FY (−b+)− FY (−b−) = FX(−b)
and

FY (b
+)− FY (b−) = 1− FX(b)

The PDF ofy = g(x) is

fY (y) = FX(−b)δ(y + b)+ (1− FX(b))δ(y − b)+ fX(y)[u−1(y + b)− u−1(y − b)]
= Q

(
b

σ

)
(δ(y + b)+ δ(y − b))+ 1√

2πσ 2
e
− y2

2σ2 [u−1(y + b)− u−1(y − b)]
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3) In the case of the hard limiter

P(Y = b) = P(X < 0) = FX(0) = 1

2

P(Y = a) = P(X > 0) = 1− FX(0) = 1

2

ThusFY (y) is a staircase function and

fY (y) = FX(0)δ(y − b)+ (1− FX(0))δ(y − a)

4) The random variabley = g(x) takes the valuesyn = xn with probability

P(Y = yn) = P(an ≤ X ≤ an+1) = FX(an+1)− FX(an)
Thus,FY (y) is a staircase function withFY (y) = 0 if y < x1 andFY (y) = 1 if y > xN . The PDF is a
sequence of impulse functions, that is

fY (y) =
N∑
i=1

[
FX(ai+1)− FX(ai)

]
δ(y − xi)

=
N∑
i=1

[
Q
(ai
σ

)
−Q

(ai+1

σ

)]
δ(y − xi)

Problem 5.13

The equationx = tanφ has a unique solution in[−π
2 ,

π
2 ], that is

φ1 = arctanx

Furthermore

x ′(φ) =
(

sinφ

cosφ

)′
= 1

cos2 φ
= 1+ sin2 φ

cos2 φ
= 1+ x2

Thus,

fX(x) = f�(φ1)

|x ′(φ1)| =
1

π(1+ x2)

We observe thatfX(x) is the Cauchy density. SincefX(x) is even we immediately getE[X] = 0. However,
the variance is

σ 2
X = E[X2] − (E[X])2

= 1

π

∫ ∞

−∞
x2

1+ x2
dx = ∞

Problem 5.14
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1)

E[Y ] =
∫ ∞

0
yfY (y)dy ≥

∫ ∞

α

yfY (y)dy

≥ α

∫ ∞

α

yfY (y)dy = αP (Y ≥ α)

ThusP(Y ≥ α) ≤ E[Y ]/α.

2) ClearlyP(|X − E[X]| > ε) = P((X − E[X])2 > ε2). Thus using the results of the previous question
we obtain

P(|X − E[X]| > ε) = P((X − E[X])2 > ε2) ≤ E[(X − E[X])2]
ε2

= σ 2

ε2

Problem 5.15

The characteristic function of the binomial distribution is

ψX(v) =
n∑
k=0

ejvk

(
n

k

)
pk(1− p)n−k

=
n∑
k=0

(
n

k

)
(pejv)k(1− p)n−k = (pejv + (1− p))n

Thus

E[X] = m
(1)
X = 1

j

d

dv
(pejv + (1− p))n

∣∣∣∣
v=0

= 1

j
n(pejv + (1− p))n−1pjejv

∣∣∣∣
v=0

= n(p + 1− p)n−1p = np

E[X2] = m
(2)
X = (−1)

d2

dv2
(pejv + (1− p))n

∣∣∣∣
v=0

= (−1)
d

dv

[
n(pejv + (1− p)n−1pjejv

] ∣∣∣∣
v=0

= [
n(n− 1)(pejv + (1− p))n−2p2e2jv + n(pejv + (1− p))n−1pejv

] ∣∣∣∣
v=0

= n(n− 1)(p + 1− p)p2 + n(p + 1− p)p
= n(n− 1)p2 + np

Hence the variance of the binomial distribution is

σ 2 = E[X2] − (E[X])2 = n(n− 1)p2 + np − n2p2 = np(1− p)

Problem 5.16
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The characteristic function of the Poisson distribution is

ψX(v) =
∞∑
k=0

ejvk
λk

k! e
−k =

∞∑
k=0

(ejv−1λ)k

k!

But
∑∞

k=0
ak

k! = ea so thatψX(v) = eλ(e
jv−1). Hence

E[X] = m
(1)
X = 1

j

d

dv
ψX(v)

∣∣∣∣
v=0

= 1

j
eλ(e

jv−1)jλejv
∣∣∣∣
v=0

= λ

E[X2] = m
(2)
X = (−1)

d2

dv2
ψX(v)

∣∣∣∣
v=0

= (−1)
d

dv

[
λeλ(e

jv−1)ejvj
] ∣∣∣∣
v=0

=
[
λ2eλ(e

jv−1)ejv + λeλ(ejv−1)ejv
] ∣∣∣∣
v=0

= λ2 + λ

Hence the variance of the Poisson distribution is

σ 2 = E[X2] − (E[X])2 = λ2 + λ− λ2 = λ

Problem 5.17

For n odd, xn is odd and since the zero-mean Gaussian PDF is even their product is odd. Since the in-
tegral of an odd function over the interval[−∞,∞] is zero, we obtainE[Xn] = 0 for n even. Let
In =

∫∞
−∞ x

nexp(−x2/2σ 2)dx with n even. Then,

d

dx
In =

∫ ∞

−∞

[
nxn−1e

− x2

2σ2 − 1

σ 2
xn+1e

− x2

2σ2

]
dx = 0

d2

dx2
In =

∫ ∞

−∞

[
n(n− 1)xn−2e

− x2

2σ2 − 2n+ 1

σ 2
xne

− x2

2σ2 + 1

σ 4
xn+2e

− x2

2σ2

]
dx

= n(n− 1)In−2 − 2n+ 1

σ 2
In + 1

σ 4
In+2 = 0

Thus,

In+2 = σ 2(2n+ 1)In − σ 4n(n− 1)In−2

with initial conditionsI0 =
√

2πσ 2, I2 = σ 2
√

2πσ 2. We prove now that

In = 1× 3× 5× · · · × (n− 1)σ n
√

2πσ 2

The proof is by induction onn. For n = 2 it is certainly true sinceI2 = σ 2
√

2πσ 2. We assume that the
relation holds forn and we will show that it is true forIn+2. Using the previous recursion we have

In+2 = 1× 3× 5× · · · × (n− 1)σ n+2(2n+ 1)
√

2πσ 2

−1× 3× 5× · · · × (n− 3)(n− 1)nσn−2σ 4
√

2πσ 2

= 1× 3× 5× · · · × (n− 1)(n+ 1)σ n+2
√

2πσ 2

ClearlyE[Xn] = 1√
2πσ2

In and

E[Xn] = 1× 3× 5× · · · × (n− 1)σ n
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Problem 5.18

1) fX,Y (x, y) is a PDF so that its integral over the support region ofx, y should be one.∫ 1

0

∫ 1

0
fX,Y (x, y)dxdy = K

∫ 1

0

∫ 1

0
(x + y)dxdy

= K

[∫ 1

0

∫ 1

0
xdxdy +

∫ 1

0

∫ 1

0
ydxdy

]
= K

[
1

2
x2

∣∣∣∣1
0

y
∣∣1
0 +

1

2
y2

∣∣∣∣1
0

x
∣∣1
0

]
= K

ThusK = 1.

2)

P(X + Y > 1) = 1− P(X + Y ≤ 1)

= 1−
∫ 1

0

∫ 1−x

0
(x + y)dxdy

= 1−
∫ 1

0
x

∫ 1−x

0
dydx −

∫ 1

0
dx

∫ 1−x

0
ydy

= 1−
∫ 1

0
x(1− x)dx −

∫ 1

0

1

2
(1− x)2dx

= 2

3

3) By exploiting the symmetry offX,Y and the fact that it has to integrate to 1, one immediately sees that the
answer to this question is 1/2. The “mechanical” solution is:

P(X > Y) =
∫ 1

0

∫ 1

y

(x + y)dxdy

=
∫ 1

0

∫ 1

y

xdxdy +
∫ 1

0

∫ 1

y

ydxdy

=
∫ 1

0

1

2
x2

∣∣∣∣1
y

dy +
∫ 1

0
yx

∣∣∣∣1
y

dy

=
∫ 1

0

1

2
(1− y2)dy +

∫ 1

0
y(1− y)dy

= 1

2

4)

P(X > Y |X + 2Y > 1) = P(X > Y,X + 2Y > 1)/P (X + 2Y > 1)
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The region over which we integrate in order to findP(X > Y,X + 2Y > 1) is marked with anA in the
following figure.

�
�
�





....�
�
�
�
�












x

y

1/3

(1,1)

x+2y=1

A

Thus

P(X > Y,X + 2Y > 1) =
∫ 1

1
3

∫ x

1−x
2

(x + y)dxdy

=
∫ 1

1
3

[
x(x − 1− x

2
)+ 1

2
(x2 − (1− x

2
)2)

]
dx

=
∫ 1

1
3

(
15

8
x2 − 1

4
x − 1

8

)
dx

= 49

108

P(X + 2Y > 1) =
∫ 1

0

∫ 1

1−x
2

(x + y)dxdy

=
∫ 1

0

[
x(1− 1− x

2
)+ 1

2
(1− (1− x

2
)2)

]
dx

=
∫ 1

0

(
3

8
x2 + 3

4
x + 3

8

)
dx

= 3

8
× 1

3
x3

∣∣∣∣1
0

+ 3

4
× 1

2
x2

∣∣∣∣1
0

+ 3

8
x

∣∣∣∣1
0

= 7

8

Hence,P(X > Y |X + 2Y > 1) = (49/108)/(7/8) = 14/27

5) WhenX = Y the volume under integration has measure zero and thus

P(X = Y ) = 0

6) Conditioned on the fact thatX = Y , the new p.d.f ofX is

fX|X=Y (x) = fX,Y (x, x)∫ 1
0 fX,Y (x, x)dx

= 2x.

In words, we re-normalizefX,Y (x, y) so that it integrates to 1 on the region characterized byX = Y . The
result depends only onx. ThenP(X > 1

2|X = Y ) = ∫ 1
1/2 fX|X=Y (x)dx = 3/4.

108



7)

fX(x) =
∫ 1

0
(x + y)dy = x +

∫ 1

0
ydy = x + 1

2

fY (y) =
∫ 1

0
(x + y)dx = y +

∫ 1

0
xdx = y + 1

2

8) FX(x|X + 2Y > 1) = P(X ≤ x,X + 2Y > 1)/P (X + 2Y > 1)

P (X ≤ x,X + 2Y > 1) =
∫ x

0

∫ 1

1−v
2

(v + y)dvdy

=
∫ x

0

[
3

8
v2 + 3

4
v + 3

8

]
dv

= 1

8
x3 + 3

8
x2 + 3

8
x

Hence,

fX(x|X + 2Y > 1) =
3
8x

2 + 6
8x + 3

8

P(X + 2Y > 1)
= 3

7
x2 + 6

7
x + 3

7

E[X|X + 2Y > 1] =
∫ 1

0
xfX(x|X + 2Y > 1)dx

=
∫ 1

0

(
3

7
x3 + 6

7
x2 + 3

7
x

)
= 3

7
× 1

4
x4

∣∣∣∣1
0

+ 6

7
× 1

3
x3

∣∣∣∣1
0

+ 3

7
× 1

2
x2

∣∣∣∣1
0

= 17

28

Problem 5.19

1)

FY (y) = P(Y ≤ y) = P(X1 ≤ y ∪X2 ≤ y ∪ · · · ∪Xn ≤ y)

Since the previous events are not necessarily disjoint, it is easier to work with the function 1− [FY (y)] =
1− P(Y ≤ y) in order to take advantage of the independence ofXi ’s. Clearly

1− P(Y ≤ y) = P(Y > y) = P(X1 > y ∩X2 > y ∩ · · · ∩Xn > y)

= (1− FX1(y))(1− FX2(y)) · · · (1− FXn(y))
Differentiating the previous with respect toy we obtain

fY (y) = fX1(y)

n∏
i �=1

(1− FXi (y))+ fX2(y)

n∏
i �=2

(1− FXi (y))+ · · · + fXn(y)
n∏
i �=n
(1− FXi (y))
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2)

FZ(z) = P(Z ≤ z) = P(X1 ≤ z,X2 ≤ z, · · · , Xn ≤ z)

= P(X1 ≤ z)P (X2 ≤ z) · · ·P(Xn ≤ z)

Differentiating the previous with respect toz we obtain

fZ(z) = fX1(z)

n∏
i �=1

FXi (z)+ fX2(z)

n∏
i �=2

FXi (z)+ · · · + fXn(z)
n∏
i �=n
FXi (z)

Problem 5.20

E[X] =
∫ ∞

0
x
x

σ 2
e
− x2

2σ2 dx = 1

σ 2

∫ ∞

0
x2e

− x2

2σ2 dx

However for the Gaussian random variable of zero mean and varianceσ 2

1√
2πσ 2

∫ ∞

−∞
x2e

− x2

2σ2 dx = σ 2

Since the quantity under integration is even, we obtain that

1√
2πσ 2

∫ ∞

0
x2e

− x2

2σ2 dx = 1

2
σ 2

Thus,

E[X] = 1

σ 2

√
2πσ 2

1

2
σ 2 = σ

√
π

2

In order to findVAR(X) we first calculateE[X2].

E[X2] = 1

σ 2

∫ ∞

0
x3e

− x2

2σ2 dx = −
∫ ∞

0
xd[e− x2

2σ2 ]

= −x2e
− x2

2σ2

∣∣∣∣∞
0

+
∫ ∞

0
2xe−

x2

2σ2 dx

= 0+ 2σ 2
∫ ∞

0

x

σ 2
e
− x2

2σ2 dx = 2σ 2

Thus,

VAR(X) = E[X2] − (E[X])2 = 2σ 2 − π

2
σ 2 = (2− π

2
)σ 2

Problem 5.21
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LetZ = X + Y . Then,

FZ(z) = P(X + Y ≤ z) =
∫ ∞

−∞

∫ z−y

−∞
fX,Y (x, y)dxdy

Differentiating with respect toz we obtain

fZ(z) =
∫ ∞

−∞
d

dz

∫ z−y

−∞
fX,Y (x, y)dxdy

=
∫ ∞

−∞
fX,Y (z− y, y) d

dz
(z− y)dy

=
∫ ∞

−∞
fX,Y (z− y, y)dy

=
∫ ∞

−∞
fX(z− y)fY (y)dy

where the last line follows from the independence ofX andY . ThusfZ(z) is the convolution offX(x) and
fY (y). With fX(x) = αe−αxu(x) andfY (y) = βe−βxu(x) we obtain

fZ(z) =
∫ z

0
αe−αvβe−β(z−v)dv

If α = β then

fZ(z) =
∫ z

0
α2e−αzdv = α2ze−αzu−1(z)

If α �= β then

fZ(z) = αβe−βz
∫ z

0
e(β−α)vdv = αβ

β − α
[
e−αz − e−βz] u−1(z)

Problem 5.22

1) fX,Y (x, y) is a PDF, hence its integral over the supporting region ofx, andy is 1.∫ ∞

0

∫ ∞

y

fX,Y (x, y)dxdy =
∫ ∞

0

∫ ∞

y

Ke−x−ydxdy

= K

∫ ∞

0
e−y
∫ ∞

y

e−xdxdy

= K

∫ ∞

0
e−2ydy = K(−1

2
)e−2y

∣∣∣∣∞
0

= K
1

2

ThusK should be equal to 2.

2)

fX(x) =
∫ x

0
2e−x−ydy = 2e−x(−e−y)

∣∣∣∣x
0

= 2e−x(1− e−x)

fY (y) =
∫ ∞

y

2e−x−ydy = 2e−y(−e−x)
∣∣∣∣∞
y

= 2e−2y
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3)

fX(x)fY (y) = 2e−x(1− e−x)2e−2y = 2e−x−y2e−y(1− e−x)
�= 2e−x−y = fX,Y (x, y)

ThusX andY are not independent.

4) If x < y thenfX|Y (x|y) = 0. If x ≥ y, then withu = x − y ≥ 0 we obtain

fU(u) = fX|Y (x|y) = fX,Y (x, y)

fY (y)
= 2e−x−y

2e−2y
= e−x+y = e−u

5)

E[X|Y = y] =
∫ ∞

y

xe−x+ydx = ey
∫ ∞

y

xe−xdx

= ey

[
−xe−x

∣∣∣∣∞
y

+
∫ ∞

y

e−xdx

]
= ey(ye−y + e−y) = y + 1

6) In this part of the problem we will use extensively the following definite integral∫ ∞

0
xν−1e−µxdx = 1

µν
(ν − 1)!

E[XY ] =
∫ ∞

0

∫ ∞

y

xy2e−x−ydxdy =
∫ ∞

0
2ye−y

∫ ∞

y

xe−xdxdy

=
∫ ∞

0
2ye−y(ye−y + e−y)dy = 2

∫ ∞

0
y2e−2ydy + 2

∫ ∞

0
ye−2ydy

= 2
1

23
2! + 2

1

22
1! = 1

E[X] = 2
∫ ∞

0
xe−x(1− e−x)dx = 2

∫ ∞

0
xe−xdx − 2

∫ ∞

0
xe−2xdx

= 2− 2
1

22
= 3

2

E[Y ] = 2
∫ ∞

0
ye−2ydy = 2

1

22
= 1

2

E[X2] = 2
∫ ∞

0
x2e−x(1− e−x)dx = 2

∫ ∞

0
x2e−xdx − 2

∫ ∞

0
x2e−2xdx

= 2 · 2! − 2
1

23
2! = 7

2

E[Y 2] = 2
∫ ∞

0
y2e−2ydy = 2

1

23
2! = 1

2
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Hence,

COV (X, Y ) = E[XY ] − E[X]E[Y ] = 1− 3

2
· 1

2
= 1

4

and

ρX,Y = COV (X, Y )

(E[X2] − (E[X])2)1/2(E[Y 2] − (E[Y ])2)1/2 = 1√
5

Problem 5.23

E[X] = 1

π

∫ π

0
cosθdθ = 1

π
sinθ

∣∣π
0 = 0

E[Y ] = 1

π

∫ π

0
sinθdθ = 1

π
(− cosθ)

∣∣π
0 = 2

π

E[XY ] =
∫ π

0
cosθ sinθ

1

π
dθ

= 1

2π

∫ π

0
sin 2θdθ = 1

4π

∫ 2π

0
sinxdx = 0

COV (X, Y ) = E[XY ] − E[X]E[Y ] = 0

Thus the random variablesX andY are uncorrelated. However they are not independent sinceX2+Y 2 = 1.
To see this consider the probabilityp(|X| < 1/2, Y ≥ 1/2). Clearlyp(|X| < 1/2)p(Y ≥ 1/2) is different
than zero whereasp(|X| < 1/2, Y ≥ 1/2) = 0. This is because|X| < 1/2 implies thatπ/3 < θ < 5π/3
and for these values ofθ , Y = sinθ >

√
3/2> 1/2.

Problem 5.24

1) ClearlyX > r, Y > r implies thatX2 > r2, Y 2 > r2 so thatX2 + Y 2 > 2r2 or
√
X2 + Y 2 >

√
2r. Thus

the eventE1(r) = {X > r, Y > r} is a subset of the eventE2(r) = {√X2 + Y 2 >
√

2r
∣∣X, Y > 0} and

P(E1(r)) ≤ P(E2(r)).

2) SinceX andY are independent

P(E1(r)) = P(X > r, Y > r) = P(X > r)P (Y > r) = Q2(r)

3) Using the rectangular to polar transformationV = √
X2 + Y 2, � = arctanY

X
it is proved (see text Eq.

4.1.22) that

fV,�(v, θ) = v

2πσ 2
e
− v2

2σ2
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Hence, withσ 2 = 1 we obtain

P(
√
X2 + Y 2 >

√
2r
∣∣X, Y > 0) =

∫ ∞
√

2r

∫ π
2

0

v

2π
e−

v2
2 dvdθ

= 1

4

∫ ∞
√

2r
ve−

v2
2 dv = 1

4
(−e− v2

2 )

∣∣∣∣∞√
2r

= 1

4
e−r

2

Combining the results of part 1), 2) and 3) we obtain

Q2(r) ≤ 1

4
e−r

2
or Q(r) ≤ 1

2
e−

r2
2

Problem 5.25

The following is a program written in Fortran to compute theQ function

REAL*8 x,t,a,q,pi,p,b1,b2,b3,b4,b5
PARAMETER (p=.2316419d+00, b1=.31981530d+00,

+ b2=-.356563782d+00, b3=1.781477937d+00,
+ b4=-1.821255978d+00, b5=1.330274429d+00)

C-
pi=4.*atan(1.)

C-INPUT
PRINT*, ’Enter -x-’
READ*, x

C-
t=1./(1.+p*x)
a=b1*t + b2*t**2. + b3*t**3. + b4*t**4. + b5*t**5.
q=(exp(-x**2./2.)/sqrt(2.*pi))*a

C-OUTPUT
PRINT*, q

C-
STOP
END

The results of this approximation along with the actual values ofQ(x) (taken from text Table 4.1) are tabulated
in the following table. As it is observed a very good approximation is achieved.
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x Q(x) Approximation

1. 1.59× 10−1 1.587× 10−1

1.5 6.68× 10−2 6.685× 10−2

2. 2.28× 10−2 2.276× 10−2

2.5 6.21× 10−3 6.214× 10−3

3. 1.35× 10−3 1.351× 10−3

3.5 2.33× 10−4 2.328× 10−4

4. 3.17× 10−5 3.171× 10−5

4.5 3.40× 10−6 3.404× 10−6

5. 2.87× 10−7 2.874× 10−7

Problem 5.26

The joint distribution ofX andY is given by

fX,Y (x, y) = 1

2πσ 2
exp

{
−1

2

(
X Y

)( σ 2 0

0 σ 2

)(
X

Y

)}

The linear transformationsZ = X + Y andW = 2X − Y are written in matrix notation as(
Z

W

)
=
(

1 1

2 −1

)(
X

Y

)
= A

(
X

Y

)

Thus,

fZ,W (z,w) = 1

2πdet(M)1/2
exp

{
−1

2

(
Z W

)
M−1

(
Z

W

)}

where

M = A

(
σ 2 0

0 σ 2

)
At =

(
2σ 2 σ 2

σ 2 5σ 2

)
=
(

σ 2
Z

ρZ,WσZσW

ρZ,WσZσW σ 2
W

)

From the last equality we identifyσ 2
Z
= 2σ 2, σ 2

W
= 5σ 2 andρZ,W = 1/

√
10

Problem 5.27

f X|Y(x|y) = fX,Y (x, y)

fY (y)
=

√
2πσY

2πσXσY
√

1− ρ2
X,Y

exp[−A]
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where

A = (x −mX)2
2(1− ρ2

X,Y
)σ 2
X

+ (y −mY)2
2(1− ρ2

X,Y
)σ 2
Y

− 2ρ
(x −mX)(y −mY)
2(1− ρ2

X,Y
)σXσY

− (y −mY)2
2σ 2

Y

= 1

2(1− ρ2
X,Y
)σ 2
X

(
(x −mX)2 + (y −mY)2σ 2

Xρ
2
X,Y

σ 2
Y

− 2ρ
(x −mX)(y −mY)σX

σY

)

= 1

2(1− ρ2
X,Y
)σ 2
X

[
x −

(
mX + (y −mY)ρσX

σY

)]2

Thus

f X|Y(x|y) = 1√
2πσX

√
1− ρ2

X,Y

exp

{
− 1

2(1− ρ2
X,Y
)σ 2
X

[
x −

(
mX + (y −mY)ρσX

σY

)]2
}

which is a Gaussian PDF with meanmX + (y − mY)ρσX/σY and variance(1 − ρ2
X,Y
)σ 2
X. If ρ = 0 then

f X|Y(x|y) = fX(x)which implies thatY does not provide any information aboutX orX, Y are independent.
If ρ = ±1 then the variance off X|Y(x|y) is zero which means thatX|Y is deterministic. This is to be expected
sinceρ = ±1 implies a linear relationX = AY + b so that knowledge ofY provides all the information
aboutX.

Problem 5.28

1)Z andW are linear combinations of jointly Gaussian RV’s, therefore they are jointly Gaussian too.

2) SinceZ andW are jointly Gaussian with zero-mean, they are independent if they are uncorrelated. This
implies that they are independent ifE[ZW ] = 0. ButE[ZW ] = E[XY ](cos2 θ − sin2 θ) where we have
used the fact that sinceX andY are zero-mean and have the same variance we haveE[X2] = E[Y 2], and
therefore,(E(Y 2)− E(X2)) ∼ θ cosθ = 0. From above, in order forZ andW to be independent we must
have

cos2 θ − sin2 θ = 0 �⇒ θ = π

4
+ kπ

2
, k ∈ Z

Note also that ifX andY are independent, thenE[XY ] = 0 and any rotation will produce independent
random variables again.

Problem 5.29

1) fX,Y (x, y) is a PDF and its integral over the supporting region ofx andy should be one.∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dxdy

=
∫ 0

−∞

∫ 0

−∞
K

π
e−

x2+y2

2 dxdy +
∫ ∞

0

∫ ∞

0

K

π
e−

x2+y2

2 dxdy

= K

π

∫ 0

−∞
e−

x2
2 dx

∫ 0

−∞
e−

y2

2 dx + K

π

∫ ∞

0
e−

x2
2 dx

∫ ∞

0
e−

y2

2 dx

= K

π

[
2(

1

2

√
2π)2

]
= K
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ThusK = 1

2) If x < 0 then

fX(x) =
∫ 0

−∞
1

π
e−

x2+y2

2 dy = 1

π
e−

x2
2

∫ 0

−∞
e−

y2

2 dy

= 1

π
e−

x2
2

1

2

√
2π = 1√

2π
e−

x2
2

If x > 0 then

fX(x) =
∫ ∞

0

1

π
e−

x2+y2

2 dy = 1

π
e−

x2
2

∫ ∞

0
e−

y2

2 dy

= 1

π
e−

x2
2

1

2

√
2π = 1√

2π
e−

x2
2

Thus for everyx, fX(x) = 1√
2π
e−

x2
2 which implies thatfX(x) is a zero-mean Gaussian random variable with

variance 1. SincefX,Y (x, y) is symmetric to its arguments and the same is true for the region of integration
we conclude thatfY (y) is a zero-mean Gaussian random variable of variance 1.

3) fX,Y (x, y) has not the same form as a binormal distribution. Forxy < 0, fX,Y (x, y) = 0 but a binormal
distribution is strictly positive for everyx, y.

4) The random variablesX and Y are not independent for ifxy < 0 thenfX(x)fY (y) �= 0 whereas
fX,Y (x, y) = 0.

5)

E[XY ] = 1

π

∫ 0

−∞

∫ 0

−∞
XYe−

x2+y2

2 dxdy + 1

π

∫ ∞

0

∫ ∞

0
e−

x2+y2

2 dxdy

= 1

π

∫ 0

−∞
Xe−

x2
2 dx

∫ 0

−∞
Ye−

y2

2 dy + 1

π

∫ ∞

0
Xe−

x2
2 dx

∫ ∞

0
Ye−

y2

2 dy

= 1

π
(−1)(−1)+ 1

π
= 2

π

Thus the random variablesX andY are correlated sinceE[XY ] �= 0 andE[X] = E[Y ] = 0, so that
E[XY ] − E[X]E[Y ] �= 0.

6) In generalfX|Y (x, y) = fX,Y (x,y)

fY (y)
. If y > 0, then

fX|Y (x, y) =
 0 x < 0√

2
π
e− x2

2 x ≥ 0

If y ≤ 0, then

fX|Y (x, y) =
 0 x > 0√

2
π
e−

x2
2 x < 0
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Thus

fX|Y (x, y) =
√

2

π
e−

x2
2 u(xy)

which is not a Gaussian distribution.

Problem 5.30

fX,Y (x, y) = 1

2πσ 2
exp

{
−(x −m)

2 + y2

2σ 2

}
With the transformation

V =
√
X2 + Y 2, � = arctan

Y

X

we obtain

fV,�(v, θ) = vfX,Y (v cosθ, v sinθ)

= v

2πσ 2
exp

{
−(v cosθ −m)2 + v2 sinθ

2σ 2

}
= v

2πσ 2
exp

{
−v

2 +m2 − 2mv cosθ

2σ 2

}
To obtain the marginal probability density function for the magnitude, we integrate overθ so that

fV (v) =
∫ 2π

0

v

2πσ 2
e
− v2+m2

2σ2 e
mv cosθ
σ2 dθ

= v

σ 2
e
− v2+m2

2σ2
1

2π

∫ 2π

0
e
mv cosθ
σ2 dθ

= v

σ 2
e
− v2+m2

2σ2 I0(
mv

σ 2
)

where

I0(
mv

σ 2
) = 1

2π

∫ 2π

0
e
mv cosθ
σ2 dθ

With m = 0 we obtain

fV (v) =
 v

σ2e
− v2

2σ2 v > 0

0 v ≤ 0

which is the Rayleigh distribution.

Problem 5.31
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1) LetXi be a random variable taking the values 1, 0, with probability1
4 and 3

4 respectively. Then,mXi =
1
4 · 1+ 3

4 · 0 = 1
4. The weak law of large numbers states that the random variableY = 1

n

∑n
i=1Xi has mean

which converges tomXi with probability one. Using Chebychev’s inequality (see Problem 4.13) we have

P(|Y −mXi | ≥ ε) ≤ σ2
Y

ε2 for everyε > 0. Hence, withn = 2000,Z =∑2000
i=1 Xi ,mXi = 1

4 we obtain

P(|Z − 500| ≥ 2000ε) ≤ σ 2
Y

ε2
⇒ P(500− 2000ε ≤ Z ≤ 500+ 2000ε) ≥ 1− σ 2

Y

ε2

The varianceσ 2
Y of Y = 1

n

∑n
i=1Xi is 1

n
σ 2
Xi

, whereσ 2
Xi

= p(1− p) = 3
16 (see Problem 4.13). Thus, with

ε = 0.001 we obtain

P(480≤ Z ≤ 520) ≥ 1− 3/16

2× 10−1
= .063

2) Using the C.L.T. the CDF of the random variableY = 1
n

∑n
i=1Xi converges to the CDF of the random

variableN(mXi ,
σ√
n
). Hence

P = p

(
480

n
≤ Y ≤ 520

n

)
= Q

(
480
n
−mXi
σ

)
−Q

(
520
n
−mXi
σ

)

With n = 2000,mXi = 1
4, σ 2 = p(1−p)

n
we obtain

P = Q

(
480− 500√

2000p(1− p)
)
−Q

(
520− 500√

2000p(1− p)
)

= 1− 2Q

(
20√
375

)
= .682

Problem 5.32

The random variableX(t0) is uniformly distributed over[−1 1]. Hence,

mX(t0) = E[X(t0)] = E[X] = 0

As it is observed the meanmX(t0) is independent of the time instantt0.

Problem 5.33

mX(t) = E[A+ Bt] = E[A] + E[B]t = 0

where the last equality follows from the fact thatA, B are uniformly distributed over[−1 1] so that
E[A] = E[B] = 0.

RX(t1, t2) = E[X(t1)X(t2)] = E[(A+ Bt1)(A+ Bt2)]
= E[A2] + E[AB]t2 + E[BA]t1 + E[B2]t1t2
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The random variablesA, B are independent so thatE[AB] = E[A]E[B] = 0. Furthermore

E[A2] = E[B2] =
∫ 1

−1
x2 1

2
dx = 1

6
x3
∣∣1−1 =

1

3

Thus

RX(t1, t2) = 1

3
+ 1

3
t1t2

Problem 5.34

SinceX(t) = X with the random variable uniformly distributed over[−1 1] we obtain

fX(t1),X(t2),··· ,X(tn)(x1, x2, . . . , xn) = fX,X,··· ,X(x1, x2, . . . , xn)

for all t1, . . . , tn andn. Hence, the statistical properties of the process are time independent and by definition
we have a stationary process.

Problem 5.35

1) f (τ) cannot be the autocorrelation function of a random process forf (0) = 0 < f (1/4f0) = 1. Thus
the maximum absolute value off (τ) is not achieved at the originτ = 0.

2) f (τ) cannot be the autocorrelation function of a random process forf (0) = 0 whereasf (τ) �= 0 for
τ �= 0. The maximum absolute value off (τ) is not achieved at the origin.

3) f (0) = 1 whereasf (τ) > f (0) for |τ | > 1. Thusf (τ) cannot be the autocorrelation function of a
random process.

4) f (τ) is even and the maximum is achieved at the origin (τ = 0). We can writef (τ) as

f (τ) = 1.2�(τ)−�(τ − 1)−�(τ + 1)

Taking the Fourier transform of both sides we obtain

S(f ) = 1.2sinc2(f )− sinc2(f )
(
e−j2πf + ej2πf

) = sinc2(f )(1.2− 2 cos(2πf ))

As we observe the power spectrumS(f ) can take negative values, i.e. forf = 0. Thusf (τ) can not be the
autocorrelation function of a random process.

Problem 5.36
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The random variableωi takes the values{1,2, . . . ,6} with probability 1
6. Thus

EX = E

[∫ ∞

−∞
X2(t)dt

]
= E

[∫ ∞

−∞
ω2
i e

−2tu2
−1(t)dt

]
= E

[∫ ∞

0
ω2
i e

−2t dt

]
=

∫ ∞

0
E[ω2

i ]e−2t dt =
∫ ∞

0

1

6

6∑
i=1

i2e−2t dt

= 91

6

∫ ∞

0
e−2t dt = 91

6
(−1

2
e−2t )

∣∣∣∣∞
0

= 91

12

Thus the process is an energy-type process. However, this process is not stationary for

mX(t) = E[X(t) = E[ωi]e−tu−1(t) = 21

6
e−tu−1(t)

is not constant.

Problem 5.37

1) We find first the probability of an even number of transitions in the interval(0, τ ].
pN(n = even) = pN(0)+ pN(2)+ pN(4)+ · · ·

= 1

1+ ατ
∞∑
l=0

(
ατ

1+ ατ
)2

= 1

1+ ατ
1

1− (ατ)2

(1+ατ)2

= 1+ ατ
1+ 2ατ

The probabilitypN(n = odd) is simply 1− pN(n = even) = ατ
1+2ατ . The random processZ(t) takes the

value of 1 (at time instantt) if an even number of transitions occurred given thatZ(0) = 1, or if an odd
number of transitions occurred given thatZ(0) = 0. Thus,

mZ(t) = E[Z(t)] = 1 · p(Z(t) = 1)+ 0 · p(Z(t) = 0)

= p(Z(t) = 1|Z(0) = 1)p(Z(0) = 1)+ p(Z(t) = 1|Z(0) = 0)p(Z(0) = 0)

= pN(n = even)
1

2
+ pN(n = odd)

1

2

= 1

2

2) To determineRZ(t1, t2) note thatZ(t + τ) = 1 if Z(t) = 1 and an even number of transitions occurred in
the interval(t, t + τ ], or if Z(t) = 0 and an odd number of transitions have taken place in(t, t + τ ] (we are
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assumingτ > 0). Hence,

RZ(t + τ, t) = E[Z(t + τ)Z(t)]
= 1 · p(Z(t + τ) = 1, Z(t) = 1)+ 0 · p(Z(t + τ) = 1, Z(t) = 0)

+0 · p(Z(t + τ) = 0, Z(t) = 1)+ 0 · p(Z(t + τ) = 0, Z(t) = 0)

= p(Z(t + τ) = 1, Z(t) = 1) = p(Z(t + τ) = 1|Z(t) = 1)p(Z(t) = 1)

= 1

2

1+ ατ
1+ 2ατ

As it is observedRZ(t + τ, t) depends only onτ and thus the process is stationary. The above is forτ > 0,
in general we have

RZ(τ) = 1+ α|τ |
2(1+ 2α|τ |)

Since the process is WSS its PSD is the Fourier transform of its autocorrelation function, finding the Fourier
transform of the autocorrelation function is not an easy task. We can use integral tables to show that

SZ(f ) = 1

2
δ(f )+ 1

4α
sgn(f )

[
sin

(
πf

α

)
− cos

(
πf

α

)]
+ π

4α
cos

(
πf

α

)
− 1

2α
sin

(
πf

α

)
Si

(
πf

α

)
− 1

2α
cos

(
πf

α

)
Ci

(
πf

α

)
where

Si(x) =
∫ x

0

sin(t)

t
dt

Ci(x) = γ + ln(x)+
∫ x

0

cos(t)− 1

t
dt

Finding the power content of the process is much easier and is done by substitutingτ = 0 in the autocorrelation
function resulting inPZ = RZ(0) = 1

2.

3) Since the process is stationary

PZ = RZ(0) = 1

2

Problem 5.38

1)

mX(t) = E[X(t)] = E[X cos(2πf0t)] + E[Y sin(2πf0t)]
= E[X] cos(2πf0t)+ E[Y ] sin(2πf0t)

= 0

where the last equality follows from the fact thatE[X] = E[Y ] = 0.
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2)

RX(t + τ, t) = E[(X cos(2πf0(t + τ))+ Y sin(2πf0(t + τ)))
(X cos(2πf0t)+ Y sin(2πf0t))]

= E[X2 cos(2πf0(t + τ)) cos(2πf0t)] +
E[XY cos(2πf0(t + τ)) sin(2πf0t)] +
E[YX sin(2πf0(t + τ)) cos(2πf0t)] +
E[Y 2 sin(2πf0(t + τ)) sin(2πf0t)]

= σ 2

2
[cos(2πf0(2t + τ))+ cos(2πf0τ)] +

σ 2

2
[cos(2πf0τ)− cos(2πf0(2t + τ))]

= σ 2 cos(2πf0τ)

where we have used the fact thatE[XY ] = 0. Thus the process is stationary forRX(t + τ, t) depends only
on τ .

3) The power spectral density is the Fourier transform of the autocorrelation function, hence

SX(f ) = σ 2

2
[δ(f − f0)+ δ(f + f0)] .

4) If σ 2
X �= σ 2

Y , then

mX(t) = E[X] cos(2πf0t)+ E[Y ] sin(2πf0t) = 0

and

RX(t + τ, t) = E[X2] cos(2πf0(t + τ)) cos(2πf0t)+
E[Y 2] sin(2πf0(t + τ)) sin(2πf0t)

= σ 2
X

2
[cos(2πf0(2t + τ))− cos(2πf0τ)] +

σ 2
Y

2
[cos(2πf0τ)− cos(2πf0(2t + τ))]

= σ 2
X − σ 2

Y

2
cos(2πf0(2t + τ)+

σ 2
X + σ 2

Y

2
cos(2πf0τ)

The process is not stationary forRX(t + τ, t) does not depend only onτ but on t as well. However the
process is cyclostationary with periodT0 = 1

2f0
. Note that ifX or Y is not of zero mean then the period of

the cyclostationary process isT0 = 1
f0

.

Problem 5.39

RXY (t1, t2) = E[X(t1)Y (t2)] = E[Y (t2)X(t1)] = RYX(t2, t1)
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If we let τ = t1 − t2, then using the previous result and the fact thatX(t), Y (t) are jointly stationary, so that
RXY (t1, t2) depends only onτ , we obtain

RXY (t1, t2) = RXY (t1 − t2) = RYX(t2 − t1) = RYX(−τ)
Taking the Fourier transform of both sides of the previous relation we obtain

SXY (f ) = F[RXY (τ)] = F[RYX(−τ)]
=

∫ ∞

−∞
RYX(−τ)e−j2πf τ dτ

=
[∫ ∞

−∞
RYX(τ

′)e−j2πf τ ′dτ ′
]∗

= S∗
YX(f )

Problem 5.40

1) SX(f ) = N0
2 ,RX(τ) = N0

2 δ(τ ). The autocorrelation function and the power spectral density of the output
are given by

RY (t) = RX(τ) � h(τ) � h(−τ), SY (f ) = SX(f )|H(f )|2

With H(f ) = �(
f

2B ) we have|H(f )|2 = �2(
f

2B ) = �(
f

2B ) so that

SY (f ) = N0

2
�(

f

2B
)

Taking the inverse Fourier transform of the previous we obtain the autocorrelation function of the output

RY (τ) = 2B
N0

2
sinc(2Bτ) = BN0sinc(2Bτ)

2) The output random processY (t) is a zero mean Gaussian process with variance

σ 2
Y (t) = E[Y 2(t)] = E[Y 2(t + τ)] = RY (0) = BN0

The correlation coefficient of the jointly Gaussian processesY (t + τ), Y (t) is

ρY(t+τ)Y (t) = COV (Y (t + τ)Y (t))
σY(t+τ)σY(t)

= E[Y (t + τ)Y (t)]
BN0

= RY (τ)

BN0

With τ = 1
2B , we haveRY ( 1

2B ) = sinc(1) = 0 so thatρY(t+τ)Y (t) = 0. Hence the joint probability density
function ofY (t) andY (t + τ) is

fY(t+τ)Y (t) = 1

2πBN0
e
− Y2(t+τ)+Y2(t)

2BN0

Since the processes are Gaussian and uncorrelated they are also independent.

Problem 5.41
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The impulse response of a delay line that introduces a delay equal to� is h(t) = δ(t − �). The output
autocorrelation function is

RY (τ) = RX(τ) � h(τ) � h(−τ)
But,

h(τ) � h(−τ) =
∫ ∞

−∞
δ(−(t −�))δ(τ − (t −�))dt

=
∫ ∞

−∞
δ(t −�)δ(τ − (t −�))dt

=
∫ ∞

−∞
δ(t ′)δ(τ − t ′)dt ′ = δ(τ )

Hence,

RY (τ) = RX(τ) � δ(τ ) = RX(τ)

This is to be expected since a delay line does not alter the spectral characteristics of the input process.

Problem 5.42

The converse of the theorem is not true. Consider for example the random processX(t) = cos(2πf0t)+X
whereX is a random variable. Clearly

mX(t) = cos(2πf0t)+mX
is a function of time. However, passing this process through the LTI system with transfer function�(

f

2W )

with W < f0 produces the stationary random processY (t) = X.

Problem 5.43

1) Y (t) = d
dt
X(t) can be considered as the output process of a differentiator which is known to be a LTI

system with impulse responseh(t) = δ′(t). SinceX(t) is stationary, its mean is constant so that

mY(t) = mX′(t) = [mX(t)]′ = 0

To prove thatX(t) and d
dt
X(t) are uncorrelated we have to prove thatRXX′(0)−mX(t)mX′(t) = 0 or since

mX′(t) = 0 it suffices to prove thatRXX′(0) = 0. But,

RXX′(τ ) = RX(τ) � δ
′(−τ) = −RX(τ) � δ′(τ ) = −R′

X(τ)

and sinceRX(τ) = RX(−τ) we obtain

RXX′(τ ) = −R′
X(τ) = R′

X(−τ) = −RXX′(−τ)
ThusRXX′(τ ) is an odd function and its value at the origin should be equal to zero

RXX′(0) = 0
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The last proves thatX(t) and d
dt
X(t) are uncorrelated.

2) The autocorrelation function of the sumZ(t) = X(t)+ d
dt
X(t) is

RZ(τ) = RX(τ)+ RX′(τ )+ RXX′(τ )+ RX′X(τ)

If we take the Fourier transform of both sides we obtain

SZ(f ) = SX(f )+ SX′(f )+ 2Re[SXX′(f )]
But,SXX′(f ) = F[−RX(τ) � δ′(τ )] = SX(f )(−j2πf ) so that Re[SXX′(f )] = 0. Thus,

SZ(f ) = SX(f )+ SX′(f )

3) Since the transfer function of a differentiator isj2πf , we haveSX′(f ) = 4π2f 2SX(f ), hence

SZ(f ) = SX(f )(1+ 4π2f 2)

Problem 5.44

1) The impulse response of the system ish(t) = L[δ(t)] = δ′(t)+ δ′(t − T ). It is a LTI system so that the
output process is a stationary. This is true sinceY (t + c) = L[X(t + c)] for all c, so ifX(t) andX(t + c)
have the same statistical properties, so do the processesY (t) andY (t + c).

2) SY (f ) = SX(f )|H(f )|2. But,H(f ) = j2πf + j2πf e−j2πf T so that

SY (f ) = SX(f )4π2f 2
∣∣1+ e−j2πf T

∣∣2
= SX(f )4π2f 2[(1+ cos(2πf T ))2 + sin2(2πf T )]
= SX(f )8π2f 2(1+ cos(2πf T ))

3) The frequencies for which|H(f )|2 = 0 will not be present at the output. These frequencies aref = 0,
for whichf 2 = 0 andf = 1

2T + k
T

, k ∈ Z, for which cos(2πf T ) = −1.

Problem 5.45

1) Y (t) = X(t) � (δ(t)− δ(t − T )). Hence,

SY (f ) = SX(f )|H(f )|2 = SX(f )|1− e−j2πf T |2
= SX(f )2(1− cos(2πf T ))

2) Y (t) = X(t) � (δ′(t)− δ(t)). Hence,

SY (f ) = SX(f )|H(f )|2 = SX(f )|j2πf − 1|2
= SX(f )(1+ 4π2f 2)
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3) Y (t) = X(t) � (δ′(t)− δ(t − T )). Hence,

SY (f ) = SX(f )|H(f )|2 = SX(f )|j2πf − e−j2πf T |2
= SX(f )(1+ 4π2f 2 + 4πf sin(2πf T ))

Problem 5.46

Using Schwartz’s inequality

E2[X(t + τ)Y (t)] ≤ E[X2(t + τ)]E[Y 2(t)] = RX(0)RY (0)

where equality holds for independentX(t) andY (t). Thus

|RXY (τ)| =
(
E2[X(t + τ)Y (t)]) 1

2 ≤ R
1/2
X (0)R1/2

Y (0)

The second part of the inequality follows from the fact 2ab ≤ a2 + b2. Thus, witha = R
1/2
X (0) and

b = R
1/2
Y (0) we obtain

R
1/2
X (0)R1/2

Y (0) ≤ 1

2
[RX(0)+ RY (0)]

Problem 5.47

1)

RXY (τ) = RX(τ) � δ(−τ −�) = RX(τ) � δ(τ +�)
= e−α|τ | � δ(τ +�) = e−α|τ+�|

RY (τ) = RXY (τ) � δ(τ −�) = e−α|τ+�| � δ(τ −�)
= e−α|τ |

2)

RXY (τ) = e−α|τ | � (−1

τ
) = −

∫ ∞

−∞
e−α|v|

t − v dv

RY (τ) = RXY (τ) �
1

τ
= −

∫ ∞

−∞

∫ ∞

−∞
e−α|v|

s − v
1

τ − s dsdv
(0.1)

The case ofRY (τ)can be simplified as follows. Note thatRY (τ) = F−1[SY (f )]whereSY (f ) = SX(f )|H(f )|2.
In our case,SX(f ) = 2α

α2+4π2f 2 and|H(f )|2 = π2sgn2(f ). SinceSX(f ) does not contain any impulses at

the origin (f = 0) for which|H(f )|2 = 0, we obtain

RY (τ) = F−1[SY (f )] = π2e−α|τ |
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3) The transfer function isH(f ) = 1
α+j2πf . Therefore

SY (f ) = SX(f )|H(f )|2 = SX(f )
1

α2 + 4π2f 2
= 2α

(α2 + 4π2f 2)2

Since 2α
α2+4π2f 2 ⇔ e−α|τ |, applying the differentiation in the frequency domain result we have

d

df

2α

α2 + 4π2f 2
⇔ 2π

j
τe−α|τ |

resulting in

(j2πf )2α

(α2 + 4π2f 2)2
⇔ −τ

2
e−α|τ |

Now we can apply integration in the time domain result to conclude that

2α

(α2 + 4π2f 2)2
⇔ −1

2

∫ τ

−∞
ue−α|u| du

Integration of the right hand side is simple and should be carried out consideringτ < 0 andτ > 0 separately.
If we do this we will have

RY (τ) = F−1

[
2α

(α2 + 4π2f 2)2

]
= 1

2α
|τ |e−α|τ | + 1

2α2
e−α|τ |

ForSXY (f ) we have

SXY (f ) = SX(f )H ∗(f ) = 2α

(α2 + 4π2f 2)(α − j2πf )
= 2α(α + j2πf )

(α2 + 2π2f 2)2

or

RXY (τ) = F−1

[
2α2

(α2 + 4π2f 2)2

]
+ F−1

[
j2πf (2α)

(α2 + 4π2f 2)2

]
The inverse Fourier transform of the first term we have already found, for the second term we apply the
differentiation property of the Fourier transform. We have

RXY (τ) = 1

2α
e−α|τ | + 1

2
|τ |e−α|τ | + d

dτ

(
1

2α2
e−α|τ | + 1

2α
|τ |e−α|τ |

)
This simplifies to

RXY (τ) = 1

2
e−α|τ |

(
1

α
+ |τ | − τ

)

4) The system’s transfer function isH(f ) = −1+j2πf
1+j2πf . Hence,

SXY (f ) = SX(f )H ∗(f ) = 2α

α2 + 4π2f 2

−1− j2πf

1− j2πf

= 4α

1− α2

1

1− j2πf
+ α − 1

1+ α
1

α + j2πf
+ 1+ α
α − 1

1

α − j2πf
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Thus,

RXY (τ) = F−1[SXY (f )]
= 4α

1− α2
eτu−1(−τ)+ α − 1

1+ αe
−ατu−1(τ )+ 1+ α

α − 1
eατu−1(−τ)

For the output power spectral density we haveSY (f ) = SX(f )|H(f )|2 = SX(f )1+4π2f 2

1+4π2f 2 = SX(f ). Hence,

RY (τ) = F−1[SX(f )] = e−α|τ |

5) The impulse response of the system ish(t) = 1
2T �(

t
2T ). Hence,

RXY (τ) = e−α|τ | �
1

2T
�(

−τ
2T
) = e−α|τ | �

1

2T
�(

τ

2T
)

= 1

2T

∫ τ+T

τ−T
e−α|v|dv

If τ ≥ T , then

RXY (τ) = − 1

2T α
e−αv

∣∣∣∣τ+T
τ−T

= 1

2T α

(
e−α(τ−T ) − e−α(τ+T ))

If 0 ≤ τ < T , then

RXY (τ) = 1

2T

∫ 0

τ−T
eαvdv + 1

2T

∫ τ+T

0
e−αvdv

= 1

2T α

(
2− eα(τ−T ) − e−α(τ+T ))

The autocorrelation of the output is given by

RY (τ) = e−α|τ | �
1

2T
�(

τ

2T
) �

1

2T
�(

τ

2T
)

= e−α|τ | �
1

2T
�(

τ

2T
)

= 1

2T

∫ 2T

−2T

(
1− |x|

2T

)
e−α|τ−x|dx

If τ ≥ 2T , then

RY (τ) = e−ατ

2T α2

[
e2αT + e−2αT − 2

]
If 0 ≤ τ < 2T , then

RY (τ) = e−2αT

4T 2α2

[
e−ατ + eατ ]+ 1

T α
− τ

2T 2α2
− 2

e−ατ

4T 2α2

Problem 5.48
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Consider the random processesX(t) = Xej2πf0t andY (t) = Yej2πf0t . Clearly

RXY (t + τ, t) = E[X(t + τ)Y ∗(t)] = E[XY ]ej2πf0τ

However, bothX(t) andY (t) are nonstationary forE[X(t)] = E[X]ej2πf0t andE[Y (t)] = E[Y ]ej2πf0t are
not constant.

Problem 5.49

1)

E[X(t)] = 4

π

∫ π
4

0
A cos(2πf0t + θ)dθ

= 4A

π
sin(2πf0t + θ)

∣∣∣∣ π4
0

= 4A

π
[sin(2πf0t + π

4
)− sin(2πf0t)]

Thus,E[X(t)] is periodic with periodT = 1
f0

.

RX(t + τ, t) = E[A2 cos(2πf0(t + τ)+�) cos(2πf0t +�)]
= A2

2
E[cos(2πf0(2t + τ)+�)+ cos(2πf0τ)]

= A2

2
cos(2πf0τ)+ A2

2
E[cos(2πf0(2t + τ)+�)]

= A2

2
cos(2πf0τ)+ A2

2

4

π

∫ π
4

0
cos(2πf0(2t + τ)+ θ)dθ

= A2

2
cos(2πf0τ)+ A2

π
(cos(2πf0(2t + τ))− sin(2πf0(2t + τ)))

which is periodic with periodT ′ = 1
2f0

. Thus the process is cyclostationary with periodT = 1
f0

. Using the
results of Problem 4.48 we obtain

SX(f ) = F[ 1

T

∫ T

0
RX(t + τ, t)dt]

= F
[
A2

2
cos(2πf0τ)+ A2

T π

∫ T

0
(cos(2πf0(2t + τ))− sin(2πf0(2t + τ))dt

]
= F

[
A2

2
cos(2πf0τ)

]
= A2

4
(δ(f − f0)+ δ(f + f0))

2)

RX(t + τ, t) = E[X(t + τ)X(t)] = E[(X + Y )(X + Y )]
= E[X2] + E[Y 2] + E[YX] + E[XY ]
= E[X2] + E[Y 2] + 2E[X][Y ]
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where the last equality follows from the independence ofX andY . But,E[X] = 0 sinceX is uniform on
[−1, 1] so that

RX(t + τ, t) = E[X2] + E[Y 2] = 1

3
+ 1

3
= 2

3

The Fourier transform ofRX(t + τ, t) is the power spectral density ofX(t). Thus

SX(f ) = F[RX(t + τ, t)] = 2

3
δ(f )

Problem 5.50

h(t) = e−βtu−1(t) ⇒ H(f ) = 1
β+j2πf . The power spectral density of the input process isSX(f ) =

F[e−α|τ |] = 2α
α2+4π2f 2 . If α = β, then

SY (f ) = SX(f )|H(f )|2 = 2α

(α2 + 4π2f 2)2

If α �= β, then

SY (f ) = SX(f )|H(f )|2 = 2α

(α2 + 4π2f 2)(β2 + 4π2f 2)

Problem 5.51

1) Let Y (t) = X(t)+N(t). The procesŝX(t) is the response of the systemh(t) to the input processY (t) so
that

RYX̂(τ ) = RY (τ) � h(−τ)
= [RX(τ)+ RN(τ)+ RXN(τ)+ RNX(τ)] � h(−τ)

Also by definition

RYX̂(τ ) = E[(X(t + τ)+N(t + τ))X̂(t)] = RXX̂(τ )+ RNX̂(τ )
= RXX̂(τ )+ RN(τ) � h(−τ)+ RNX(τ) � h(−τ)

Substituting this expression forRYX̂(τ ) in the previous one, and cancelling common terms we obtain

RXX̂(τ ) = RX(τ) � h(−τ)+ RXN(τ) � h(−τ)

2)

E
[
(X(t)− X̂(t))2

]
= RX(0)+ RX̂(0)− RXX̂(0)− RX̂X(0)
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We can writeE
[
(X(t)− X̂(t))2

]
in terms of the spectral densities as

E
[
(X(t)− X̂(t))2

]
=

∫ ∞

−∞
(SX(f )+ SX̂(f )− 2SXX̂(f ))df

=
∫ ∞

−∞

[
SX(f )+ (SX(f )+ SN(f )+ 2Re[SXN(f )])|H(f )|2

−2(SX(f )+ SXN(f ))H ∗(f )
]
df

To find theH(f ) that minimizesE
[
(X(t)− X̂(t))2

]
we set the derivative of the previous expression, with

respect toH(f ), to zero. By doing so we obtain

H(f ) = SX(f )+ SXN(f )
SX(f )+ SN(f )+ 2Re[SXN(f )]

3) If X(t) andN(t) are independent, then

RXN(τ) = E[X(t + τ)N(t)] = E[X(t + τ)]E[N(t)]
SinceE[N(t)] = 0 we obtainRXN(τ) = 0 and the optimum filter is

H(f ) = SX(f )
SX(f )+ N0

2

The corresponding value ofE
[
(X(t)− X̂(t))2

]
is

Emin

[
(X(t)− X̂(t))2

]
=
∫ ∞

−∞
SX(f )N0

2SX(f )+N0
df

4) With SN(f ) = 1,SX(f ) = 1
1+f 2 andSXN(f ) = 0, then

H(f ) =
1

1+f 2

1+ 1
1+f 2

= 1

2+ f 2

Problem 5.52

1) Let X̂(t) andX̃(t) be the outputs of the systemsh(t) andg(t) when the inputZ(t) is applied. Then,

E[(X(t)− X̃(t))2] = E[(X(t)− X̂(t)+ X̂(t)− X̃(t))2]
= E[(X(t)− X̂(t))2] + E[(X̂(t)− X̃(t))2]

+E[(X(t)− X̂(t)) · (X̂(t)− X̃(t))]
But,

E[(X(t)− X̂(t)) · (X̂(t)− X̃(t))]
= E[(X(t)− X̂(t)) · Z(t) � (h(t)− g(t))]
= E

[
(X(t)− X̂(t))

∫ ∞

−∞
(h(τ )− g(τ))Z(t − τ)dτ

]
=

∫ ∞

−∞
E
[
(X(t)− X̂(t))Z(t − τ)

]
(h(τ )− g(τ))dτ = 0
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where the last equality follows from the assumptionE
[
(X(t)− X̂(t))Z(t − τ)

]
= 0 for all t , τ . Thus,

E[(X(t)− X̃(t))2] = E[(X(t)− X̂(t))2] + E[(X̂(t)− X̃(t))2]
and this proves that

E[(X(t)− X̂(t))2] ≤ E[(X(t)− X̃(t))2]

2)

E[(X(t)− X̂(t))Z(t − τ)] = 0 ⇒ E[X(t)Z(t − τ)] = E[X̂(t)Z(t − τ)]
or in terms of crosscorrelation functionsRXZ(τ) = RX̂Z(τ) = RZX̂(−τ). However,RZX̂(−τ) = RZ(−τ) �
h(τ) so that

RXZ(τ) = RZ(−τ) � h(τ) = RZ(τ) � h(τ)

3) Taking the Fourier of both sides of the previous equation we obtain

SXZ(f ) = SZ(f )H(f ) or H(f ) = SXZ(f )
SZ(f )

4)

E[ε2(t)] = E
[
(X(t)− X̂(t))((X(t)− X̂(t))

]
= E[X(t)X(t)] − E[X̂(t)X(t)]
= RX(0)− E

[∫ ∞

−∞
Z(t − v)h(v)X(t)dv

]
= RX(0)−

∫ ∞

−∞
RZX(−v)h(v)dv

= RX(0)−
∫ ∞

−∞
RXZ(v)h(v)dv

where we have used the fact thatE[(X(t)− X̂(t))X̂(t)] = E[(X(t)− X̂(t))Z(t) � h(t)] = 0

Problem 5.53

the noise equivalent bandwidth of a filter is

Bneq =
∫∞
−∞ |H(f )|2df

2H 2
max

If we have an ideal bandpass filter of bandwidthW , thenH(f ) = 1 for |f −f0| < W wheref0 is the central
frequency of the filter. Hence,

Bneq = 1

2

[∫ −f0+W
2

−f0−W
2

df +
∫ f0+W

2

f0−W
2

df

]
= W
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Problem 5.54

1) The power spectral density of the in-phase and quadrature components is given by

Snc(f ) = Sns (f ) =
{

Sn(f − f0)+ Sn(f + f0) |f | < 7

0 otherwise

If the passband of the ideal filter extends from 3 to 11 KHz, thenf0 =7 KHz is the mid-band frequency so
that

Snc(f ) = Sns (f ) =
{
N0 |f | < 7

0 otherwise

The cross spectral density is given by

Sncns (f ) =
{
j [Sn(f + f0)− Sn(f − f0) |f | < 7

0 otherwise

HoweverSn(f + f0) = Sn(f − f0) for |f | < 7 and thereforeSncns (f ) = 0. It turns then that the
crosscorrelationRncns (τ ) is zero.
2) With f0=6 KHz

Snc(f ) = Sns (f ) =


N0
2 3< |f | < 5

N0 |f | < 3

0 otherwise

The cross spectral density is given by

Sncns (f ) =


−j N0

2 −5< f < 3

j N0
2 3< f < 5

0 otherwise

Hence,

Rncns (τ ) = F−1

[
−j N0

2
�(
t + 4

2
)+ j N0

2
�(
t − 4

2
)

]
= −j N0

2
2sinc(2τ)e−j2π4τ + j N0

2
2sinc(2τ)ej2π4τ

= −2N0sinc(2τ) sin(2π4τ)

Problem 5.55
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The in-phase component ofX(t) is

Xc(t) = X(t) cos(2πf0t)+ X̂(t) sin(2πf0t)

=
∞∑

n=−∞
Anp(t − nT ) cos(2πf0(t − nT ))

+
∞∑

n=−∞
Anp̂(t − nT ) sin(2πf0(t − nT ))

=
∞∑

n=−∞
An
(
p(t − nT ) cos(2πf0(t − nT ))+ p̂(t − nT ) sin(2πf0(t − nT ))

)
=

∞∑
n=−∞

Anpc(t − nT )

where we have used the factpc(t) = p(t) cos(2πf0t) + p̂(t) sin(2πf0t). Similarly for the quadrature
component

Xs(t) = X̂(t) cos(2πf0t)−X(t) sin(2πf0t)

=
∞∑

n=−∞
Anp̂(t − nT ) cos(2πf0(t − nT ))

−
∞∑

n=−∞
Anp(t − nT ) sin(2πf0(t − nT ))

=
∞∑

n=−∞
An
(
p̂(t − nT ) cos(2πf0(t − nT ))− p(t − nT ) sin(2πf0(t − nT ))

)
=

∞∑
n=−∞

Anps(t − nT )

Problem 5.56

The envelopeV (t) of a bandpass process is defined to be

V (t) =
√
X2
c (t)+X2

s (t)

whereXc(t) andXs(t) are the in-phase and quadrature components ofX(t) respectively. However, both
the in-phase and quadrature components are lowpass processes and this makesV (t) a lowpass process
independent of the choice of the center frequencyf0.

Problem 5.57

1) The power spectrum of the bandpass signal is

Sn(f ) =
{

N0
2 |f − fc| < W

0 otherwise
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Hence,

Snc(f ) = Sns (f ) =
{
N0 |f | < W

0 otherwise

The power content of the in-phase and quadrature components ofn(t) is Pn =
∫ W
−W N0df = 2N0W

2) SinceSncns (f ) = 0, the processesNc(t), Ns(t) are independent zero-mean Gaussian with variance
σ 2 = Pn = 2N0W . Hence,V (t) = √N2

c (t)+N2
s (t) is Rayleigh distributed and the PDF is given by

fV (v) =
 v2

2N0W
e
− v2

4N0W v ≥ 0

0 otherwise

3) X(t) is given by

X(t) = (A+Nc(t)) cos(2πf0t)−NS(t) sin(2πf0t)

The processA+Nc(t) is Gaussian with meanAand variance 2N0W . Hence,V (t) = √(A+Nc(t))2 +N2
s (t)

follows the Rician distribution (see Problem 4.31). The density function of the envelope is given by

fV (v) =
 v

2N0W
I0(

Av
2N0W

)e
− v2+A2

4N0W v ≥ 0

0 otherwise

where

I0(x) = 1

2π

∫ π

−π
ex cosudu

Problem 5.58

1) The power spectral densitySn(f ) is depicted in the following figure. The output bandpass process has
non-zero power content for frequencies in the band 49× 106 ≤ |f | ≤ 51× 106. The power content is

P =
∫ −49×106

−51×106
10−8

(
1+ f

108

)
df +

∫ 51×106

49×106
10−8

(
1− f

108

)
df

= 10−8x

∣∣∣∣−49×106

−51×106

+ 10−161

2
x2

∣∣∣∣−49×106

−51×106

+ 10−8x

∣∣∣∣51×106

49×106

− 10−161

2
x2

∣∣∣∣51×106

49×106

= 2× 10−2

��
��

��
���

���������

−5·107 5·107

10−8

108
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2) The output processN(t) can be written as

N(t) = Nc(t) cos(2π50× 106t)−Ns(t) sin(2π50× 106t)

whereNc(t) andNs(t) are the in-phase and quadrature components respectively, given by

Nc(t) = N(t) cos(2π50× 106t)+ N̂(t) sin(2π50× 106t)

Ns(t) = N̂(t) cos(2π50× 106t)−N(t) sin(2π50× 106t)

The power content of the in-phase component is given by

E[|Nc(t)|2] = E[|N(t)|2] cos2(2π50× 106t)+ E[|N̂(t)|2] sin2(2π50× 106t)

= E[|N(t)|2] = 2× 10−2

where we have used the fact thatE[|N(t)|2] = E[|N̂(t)|2]. Similarly we find thatE[|Ns(t)|2] = 2× 10−2.

3) The power spectral density ofNc(t) andNs(t) is

SNc(f ) = SNs (f ) =
{

SN(f − 50× 106)+ SN(f + 50× 106) |f | ≤ 50× 106

0 otherwise

SNc(f ) is depicted in the next figure. The power content ofSNc(f ) can now be found easily as

PNc = PNs =
∫ 106

−106
10−8df = 2× 10−2

10−8

10−6 106

4) The power spectral density of the output is given by

SY (f ) = SX(f )|H(f )|2 = (|f | − 49× 106)(10−8 − 10−16|f |) for 49× 106 ≤ |f | ≤ 51× 106

Hence, the power content of the output is

PY =
∫ −49×106

−51×106
(−f − 49× 106)(10−8 + 10−16f )df

+
∫ 51×106

49×106
(f − 49× 106)(10−8 − 10−16f )df

= 2× 104 − 4

3
102

The power spectral density of the in-phase and quadrature components of the output process is given by

SYc(f ) = SYs (f ) = (
(f + 50× 106)− 49× 106

) (
10−8 − 10−16(f + 50× 106)

)
+ (−(f − 50× 106)− 49× 106

) (
10−8 + 10−16(f − 50× 106)

)
= −2× 10−16f 2 + 10−2
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for |f | ≤ 106 and zero otherwise. The power content of the in-phase and quadrature component is

PYc = PYs =
∫ 106

−106
(−2× 10−16f 2 + 10−2)df

= −2× 10−161

3
f 3

∣∣∣∣106

−106

+ 10−2f

∣∣∣∣106

−106

= 2× 104 − 4

3
102 = PY
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