Principles of Communication 5Ed R. E. Zeimer, William H Tranter Solutions Manual

Chapter 2

Signal and Linear System Theory

2.1 Problem Solutions

Problem 2.1
For the single-sided spectra, write the signal in terms of cosines:
x(t) = 10cos(4nt 4 7/8) + 6sin(8nt 4 37 /4)

= 10cos(4nt + 7/8) + 6 cos(8nt + 37w /4 — 7/2)

= 10cos(4nt + 7/8) + 6 cos(8nt + m/4)
For the double-sided spectra, write the signal in terms of complex exponentials using Euler’s
theorem:

x(t) = bexp[(dnt+7/8)] + Sexp|[—j(4dnt + 7/8)]
+3explj(8nt + 37/4)] + 3exp[—j(8nt + 37 /4)]

The two sets of spectra are plotted in Figures 2.1 and 2.2.

Problem 2.2
The result is

m(t) — 4€j(87rt+7r/2)+4€fj(87rt+ﬂ'/2)_‘_2ej(47rt77r/4)+2€fj(47rt77r/4)

= 8cos (87t +m/2) + 4cos (4t — 7/4)
= —8sin (8nt) + 4 cos (4nt — m/4)
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Figure 2.1:
Problem 2.3

(a) Not periodic.
(b) Periodic. To find the period, note that

61 207
~— =n1fo and —— =mna fo
2T 2
Therefore
10 _m
3 - ni

Hence, take nqy = 3, no = 10, and fy = 1 Hz.

(c) Periodic. Using a similar procedure as used in (b), we find that n; = 2, ny = 7, and
fo =1 Hz.

(d) Periodic. Using a similar procedure as used in (b), we find that n; = 2, ng = 3, ng = 11,
and fy = 1 Hz.

Problem 2.4

(a) The single-sided amplitude spectrum consists of a single line of height 5 at frequency 6
Hz, and the phase spectrum consists of a single line of height -7/6 radians at frequency 6
Hz. The double-sided amplitude spectrum consists of lines of height 2.5 at frequencies of
6 and -6 Hz, and the double-sided phase spectrum consists of a line of height -7 /6 radians
at frequency 6 Hz and a line of height 7/6 at frequency -6 radians Hz.

(b) Write the signal as

xp(t) = 3cos(127t — 7/2) + 4 cos(167t)

From this it is seen that the single-sided amplitude spectrum consists of lines of height 3
and 4 at frequencies 6 and 8 Hz, respectively, and the single-sided phase spectrum consists
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of a line of height -7/2 radians at frequency 6 Hz. The double-sided amplitude spectrum
consists of lines of height 1.5 and 2 at frequencies of 6 and 8 Hz, respectively, and lines of
height 1.5 and 2 at frequencies -6 and -8 Hz, respectively. The double-sided phase spectrum
consists of a line of height -7 /2 radians at frequency 6 Hz and a line of height 7/2 radians
at frequency -6 Hz.

Problem 2.5
(a) This function has area

[e.e]

Area = /6_1 [%rdt

- [ e

—00

A sketch shows that no matter how small € is, the area is still 1. With ¢ — 0, the central
lobe of the function becomes narrower and higher. Thus, in the limit, it approximates a
delta function.

(b) The area for the function is

oo 1 oo
Area:/—exp( t/e)u /exp —u)du =1
€
—00 0

A sketch shows that no matter how small € is, the area is still 1. With € — 0, the function
becomes narrower and higher. Thus in the limit, it approximates a delta function.

(c) Area = [ 1 (1—t| Je)dt = f A(t)dt =1. Ase — 0, the function becomes narrower
and higher, so 1t approximates a delta function in the limit.

Problem 2.6
(a) 513; (b) 183; (c) 0; (d) 95,583.8; (e) -157.9.

Problem 2.7

(a), (c), (e), and (f) are periodic. Their periods are 1 s, 4 s, 3 s, and 2/7 s, respectively.
The waveform of part (c¢) is a periodic train of impulses extending from -oo to oo spaced
by 4 s. The waveform of part (a) is a complex sum of sinusoids that repeats (plot). The
waveform of part (e) is a doubly-infinite train of square pulses, each of which is one unit
high and one unit wide, centered at - --, —6, —3, 0, 3, 6, ---. Waveform (f) is a raised
cosine of minimum and maximum amplitudes 0 and 2, respectively.



2.1. PROBLEM SOLUTIONS 5

Problem 2.8
(a) The result is

(t) = Re (€j67rt) 1 6Re (ej(12ﬂ't—7r/2)) — Re [€j67rt 4 ged(12mt—m/2)
(b) The result is

I(t) — %ejﬁmf + %e—j&rt + 36]'(1271'15—71'/2) + Se—j(127rt—7r/2)
(c) The single-sided amplitude spectrum consists of lines of height 1 and 6 at frequencies
of 3 and 6 Hz, respectively. The single-sided phase spectrum consists of a line of height
—m/2 at frequency 6 Hz. The double-sided amplitude spectrum consists of lines of height
3, 1/2, 1/2, and 3 at frequencies of —6, —3, 3, and 6 Hz, respectively. The double-sided
phase spectrum consists of lines of height 7/2 and —7/2 at frequencies of —6 and 6 Hz,
respectively.

Problem 2.9
(a) Power. Since it is a periodic signal, we obtain
1 To To

1
== 4sin® (87t 4 7w/4) dt = 2[1 — cos (167t +7/2)]dt =2 W
0Jo

P _
! To Jo

where Ty = 1/8 s is the period.
(b) Energy. The energy is

oo o0 1
E, = / e 2%y (t)dt = / e 2t dt = —
— 0 0 2

(c) Energy. The energy is

00 0 1
Es = / ety (—t)dt = / el dt = —
NS oo 2«

(d) Neither energy or power.

T
dt
T—oo J_T (CY2 + t2)

Py = 0 since limp_.o = f_TT W = 0.(e) Energy. Since it is the sum of z;(¢) and
[e%

x2(t), its energy is the sum of the energies of these two signals, or F5 = 1/a.
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(f) Power. Since it is an aperiodic signal (the sine starts at ¢ = 0), we use

1 (7 1
Py = lim o i sin? (57t) dt = Jim o i 5[1—cos(107rt)] dt
1 [T 1sin(20mt)]" 1
To00 2T [2 2 207 h

Problem 2.10
(a) Power. Since the signal is periodic with period 7/w, we have

T/ w T/w A2 A2
_ v 2 21 -
P_W/o A \sm(wt—i—ﬁ)\ dt = 7T/0 5 {1—cos[2(wt+0)]}dt 5

(b) Neither. The energy calculation gives

) T (A7)? dt ) T (Ar)*dt
F = lim - — = lim —t 5 0
T—oo |_7 /T + Jt\/T —jt  T—oo J_p /72 + 12

The power calculation gives

T 2 2 /2
o LT (AnPdr (A <1+«/1+T/7 )

T 1500 2T | p /2R Tooo 2T 1+/1+7T2%/72
(c) Energy
* 3
E = / A?trexp (=2t/7)dt = ZA275 (use table of integrals)
0
(d) Energy:

T/2 T
E=2 / 22dt+/ 12dt | =57
0 T/2

Problem 2.11
(a) This is a periodic train of “boxcars”, each 3 units in width and centered at multiples of

6:
1 /3 t 1 /15 1
P,== m(=)dt== dt = =W
¢ 6/_3 <3> 6/_1.5 2
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(b) This is a periodic train of unit-high isoceles triangles, each 4 units wide and centered
at multiples of 5:

2
1 (%, [t 2 [? % 22 t\°
Pb:—/ A? (= dt:—/ l—=) dt=—-—==(1-=
5) 5.0 \2 5 )y 2 53 2) |,
(c) This is a backward train of sawtooths (right triangles with the right angle on the left),
each 2 units wide and spaced by 3 units:

2
1 /2 2 12 3
3 Jo 2 33 2) |,

(d) This is a full-wave rectified cosine wave of period 1/5 (the width of each cosine pulse):

4
= — W
15

2
=W
9

1/10 1/10 1 1
Py = 5/ |cos (5rt)|? dt = 2 x 5/ [— + — cos (107rt)] dt = - W
—~1/10 0 2 2 2

Problem 2.12
(a) E=00, P=o00; (b)) E=5J, P=0W; (c) E=00, P=49W; (d) E =00, P=2W.

Problem 2.13
(a) The energy is

6 6 1 1
E = / cos? (6rt) dt = 2/ [— + - cos (127rt)] dt =61J
6 o L2 2

(b) The energy is

E = / [e_‘t|/3 cos (127Tt):| dt = 2/ e 23 [5 + 5 cos (247Tt):| dt
—00 0

where the last integral follows by the eveness of the integrand of the first one. Use a table
of definte integrals to obtain

> o3 o3 3 2/3
E = e dt + e cos (24wt) dt = = + 3 3
0 0 2 (2/3)" + (24m)

Since the result is finite, this is an energy signal.
(c) The energy is

E:/OO {2[u(t)—u(t—7)]}2dt:/74dt:28J

0
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Since the result is finite, this is an energy signal.

(d) Note that
t 0,t<0
/ u()\)d/\—r(t)—{ 1S

—0o0

which is called the unit ramp. The energy is

00 9 10 t 2 20
E:/ I (£) — 2r (¢ — 10) + 1 (¢t — 20)] dt:2/ LY =2
o 0 10 3
where the last integral follows because the integrand is a symmetrical triangle about ¢ = 10.
Since the result is finite, this is an energy signal.

Problem 2.14

(a) Expand the integrand, integrate term by term, and simplify making use of the orthog-
onality property of the orthonormal functions.

(b) Add and subtract the quantity suggested right above (2.34) and simplify.

(c) These are unit-high rectangular pulses of width T7'/4. They are centered at ¢t =
T/8, 3T/8, 5T/8, and 7T'/8. Since they are spaced by T'/4, they are adjacent to each
other and fill the interval [0, 7.

(d) Using the expression for the generalized Fourier series coefficients, we find that X; =
1/8, X9 = 3/8, X3 =5/8, and X4y = 7/8. Also, ¢, = T'/4. Thus, the ramp signal is
approximated by

t 1

3 5 l
?:§¢1(t)+§¢2(t)+§¢3(t)+§¢4(t)7 0<t<T

where the ¢,, (t)s are given in part (c).

(e) These are unit-high rectangular pulses of width 7'/2 and centered at t = T'/4 and 37'/4.
We find that X7 = 1/4 and X, = 3/4.

(f) To compute the ISE, we use

N
en = /T |x(t)|2dt—;cn 1X2|

Note that [, |z (t)]* dt = fOT (t/T)*dt = T/3. Hence, for (d),
ISEq =% - L (G +&+2+3]) =5.208 x107°T.
For (e), ISEe =% — L (& + ) =2.083 x 1072T..



2.1. PROBLEM SOLUTIONS 9

Problem 2.15

(a) The Fourier coefficients are (note that the period = %2—’;)
1 1
1 = = = = —
X=X 1 Xo 5

All other coefficients are zero.
(b) The Fourier coefficients for this case are

X=X 25(14‘])

All other coefficients are zero.
(c) The Fourier coefficients for this case are (note that the period is 2 )

2wo
1 1 1
X— :X:—'X_ :X :—'X = ——
2 2 8 ) 1 1 A ) 0 4
All other coefficients are zero.
(d) The Fourier coefficients for this case are
1 3
X_ = X = — X_ = X — —
3 3 ] 3 1 1 3

All other coefficients are zero.

Problem 2.16
The expansion interval is Ty = 4 and the Fourier coefficients are

12 , 2 [?
X, = —/ 22 I/t gy — —/ 2t2 cos nt dt
4 ), 4 /, 2

which follows by the eveness of the integrand. Let u = nnt/2 to obtain the form
2\° [ 1
Xn =2 (—) / u® cosu du = —62(—1)"
nm 0 (nﬂ)

If n is odd, the Fourier coefficients are zero as is evident from the eveness of the function
being represented. If n = 0, the integral for the coefficients is

1 [ 8
Xo== [ 2%dt =~
0 4/_2 3

The Fourier series is therefore
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Problem 2.17
Parts (a) through (c) were discussed in the text. For (d), break the integral for x (¢) up
into a part for ¢ < 0 and a part for £ > 0. Then use the odd half-wave symmetry contition.

Problem 2.18

This is a matter of integration. Only the solution for part (b) will be given here. The
integral for the Fourier coefficients is (note that the period really is Tp/2)

A To/2 ] » ;
X, = — sin (wot) e "0 dt
1o Jo
Ae—jnwot To/2
e —m [jn Sin (WOt) + cos (u)(]t)] .
A (1 + e*jm)
= — £ +1
ono (1 — 122) 1 ?é
For n = 1, the integral is
A [To/2 jA
X1 = T/ sin (wot) [cos (jnwot) — 7 sin (jnwot)] dt = — L= -X*
0Jo

This is the same result as given in Table 2.1.

Problem 2.19
(a) Use Parseval’s theorem to get

N 2 N AT 2
T

n=—N n=—N

where N is an appropriately chosen limit on the sum. We are given that only frequences
for which |nfy| < 1/7 are to be included. This is the same as requiring that |n| < 1/7fy =
Ty/T = 2. Also, for a pulse train, Pyia = A%7/Tp and, in this case, Poia = A?/2. Thus

P|nf0\<1/7' 2 2 <A>2 .9
—_— = — — SInc” (N jo7T
Ptotal A2 nzzz 2 ( fO )

i
= 3 Z sinc? (nfor)

— L2 et (12 s ()]
— % 1+2<%>2] =091
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(b) In this case, |n| <5, P = A2/5, and

P 1
Infol <1/7 .9
E—— = = E sinc™ (n 5
Ptotal 5 ( / )

= {1 +2[(0.9355)% + (07568 + (0.5046)° + (0.2339)°] }

= 0.90

Problem 2.20
(a) The integral for Y, is

To

1 ; 1 ,
Yo == / y(t) e Im0ldt = — x (t — tg) e Imw0tqt
To To To 0

Let t' =t — tg, which results in

1

To—to
Y, = [?/ T (tl) Gjm"otldt'} e~ Inwolo — X e=Jnwolo
0

—to

(b) Note that
y (t) = Acoswot = Asin (wot + 7/2) = Asin [wg (t + 7/2wp)]

Thus, ¢ in the theorem proved in part (a) here is —7/2w. By Euler’s theorem, a sine wave

can be expressed as

: 1
sin (wot) = —e/¥ot — —
eot) =55 2j

Its Fourier coefficients are therefore X; = % and X_; = —2%.. According to the theorem

proved in part (a), we multiply these by the factor

e Jwot

e—jnwoto — e—jnwo(—w/Qwo) — ejmr/2

For n = 1, we obtain

Y, = iejﬂ/ 21
2j 2
For n = —1, we obtain
Y. = _ie—jﬂ/2 — l
27 2
which gives the Fourier series representation of a cosine wave as

1 . 1 _.
y(t) = iejwot + ieﬂ“’ot = coswyt
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We could have written down this Fourier representation directly by using Euler’s theorem.

Problem 2.21
(a) Use the Fourier series of a triangular wave as given in Table 2.1 with A=1and ¢t =0
to obtain the series

4 4 4 4 4 4

Tt E TR T wm T e

1= =
+257r2 972

Multiply both sides by %2 to get the series in given in the problem. Therefore, its sum is
2

™

(b) Use the Fourier series of a square wave (specialize the Fourier series of a pulse train)
with A =1 and ¢ = 0 to obtain the series

1_4 . 1+1
o 3 5

Multiply both sides by 7 to get the series in the problem statement. Hence, the sum is 7.

Problem 2.22
(a) In the expression for the Fourier series of a pulse train (Table 2.1), let tg = —Tp/8 and

7 ="Ty/4 to get
A . n ™
X, = Zsmc (Z) exp <j 4f0>
3A

(b) The amplitude spectrum is the same as for part (a) except that Xo = . Note that
this can be viewed as having a sinc-function envelope with zeros at multiples of %. The
phase spectrum can be obtained from that of part (a) by adding a phase shift of 7 for
negative frequencies and subtracting 7 for postitive frequencies (or vice versa).

Problem 2.23
(a) There is no line at dc; otherwise it looks like a squarewave spectrum.
(b) Note that
dxrp (t)
dt
where K is a suitably chosen constant. The relationship between spectral components is
therefore

.SL‘A(t):K

X! = K (jnwo) X,]

where the superscript A refers to x4 (t) and B refers to xp (t).
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Problem 2.24
(a) This is the right half of a triangle waveform of width 7 and height A, or A (1 —t/7).
Therefore, the Fourier transform is

X (f) = A /()T(l—t/r)ej2”ftdt

- j;:rf [1 - jziﬁ (1 - e_ij>]

where a table of integrals has been used.
(b) Since 2 (t) = x1 (—t) we have, by the time reversal theorem, that

Xo(f) = Xi(f)=X1 (=)
A 1 ;
— o j2nfr
—onf [H Jorfr (1 c )]
(c) Since z3 (t) = x1 (t) — 22 (t) we have, after some simplification, that

X3(f) = Xl(f)—XQ(f)
= %sinc@fﬂ

(d) Since x4 (t) = z1 (t) + x2 (t) we have, after some simplification, that

Xa(f) = Xi(f)+X2(f)
_ A sin? (7 f27')
(mf7)
= Arsinc® (f7)

This is the expected result, since x4 (t) is really a triangle function.

Problem 2.25
(a) Using a table of Fourier transforms and the time reversal theorem, the Fourierr transform

of the given signal is
1 1

X(f):a+j27rf_a—j27rf

Note that x (t) — sgn(t) in the limit as & — 0. Taking the limit of the above Fourier
transform as o — 0, we deduce that

1 1 1

Flsgn(t)] = 2rf  —j2xf  gnf
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(b) Using the given relationship between the unit step and the signum function and the
linearity property of the Fourier transform, we obtain

Flu(t)] = 5Flsen (0] +5F [

= S50

(c) The same result as obtained in part (b) is obtained.

Problem 2.26
(a) Two differentiations give

Pxy (t)  db(t)
a2 dt

—6(t—2)+6(t—3)
Application of the differentiation theorem of Fourierr transforms gives
(j2r )2 X1 (f) = (j2rf) (1) — 1 e 94T 1. ¢=9677

where the time delay theorem and the Fourier transform of a unit impulse have been used.
Dividing both sides by (j2r f)?, we obtain

1 e~ JAnf _ o—jb7f 1 e—Jof
o f (ornf)®  g2nf  jorf

X1 (f) sinc (2f)

(b) Two differentiations give

d2.§C2 (t)
dt?

=6(t)—20(t—1)+6(t—2)
Application of the differentiation theorem gives

(27 f)* Xo (f) = 1 — 2e79%7F 4 e=947f
Dividing both sides by (j27 f)?, we obtain

1 — 2e77%mf 4 gi4nf
(j2rf)?

= sinc? (f) e 9%/

Xa (f)

(c) Two differentiations give

d2333 (t)

A2 =6(t)—6(t—1)—6(t—2)+6(t—3)
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Application of the differentiation theorem gives
(2 f)? X3 (f) =1 — e727F _ o74nf | o=i6mf
Dividing both sides by (j2f)?, we obtain

1— 6—j27rf - 6—j47rf + 6—j67rf

X3(f) =

(j2mf)”
(d) Two differentiations give
d?z4 (1) dé (t —2)
= 20L(t—1/2) =28 (t = 1) = 27—

Application of the differentiation theorem gives
(j2m )2 X4 (f) = 2sinc (f) e 7™ — 2e7927f — 2 (jon f) e~ 9477
Dividing both sides by (j27f)?, we obtain

_ 2e792 4 (j2nf) eI —sinc (f) eI

X4 (f) 2 (7Tf)2

Problem 2.27

(a) This is an odd signal, so its Fourier transform is odd and purely imaginary.
(b) This is an even signal, so its Fourier transform is even and purely real.

(c) This is an odd signal, so its Fourier transform is odd and purely imaginary.
(d) This signal is neither even nor odd signal, so its Fourier transform is complex.
(e) This is an even signal, so its Fourier transform is even and purely real.
(f) This signal is even, so its Fourier transform is real and even.

Problem 2.28
(a) Using superposition, time delay, and the Fourier transform of an impulse, we obtain

X (f) = eI 42 4 79107 — 4 cos? (67rt)

The Fourier transform is even and real because the signal is even.
(b) Using superposition, time delay, and the Fourierr transform of an impulse, we obtain

Xy (f) = 12 — 7912 — 95gin (127 f)

The Fourier transform is odd and imaginary because the signal is odd.
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(c) The Fourier transform is

4

X3 (f) = Z (n2 + 1) e—Jdmnf

n=0

It is complex because the signal is neither even nor odd.

Problem 2.29
(a) The Fourier transform of this signal is

Y (f)— 2(1/3) - 2/3
ST N @nf/3)? T 1+ 1/ (3/2m)

Thus, the energy spectral density is

B 2/3 ?
G = { oy <3/27r>12}

(b) The Fourier transform of this signal is

Thus, the energy spectral density is

X (f) = gHQ <3—{)> = gn (%)

(c) The Fourier transform of this signal is

X (f) = %sinc (g)

so the energy spectral density is

Gs (f) = ;—gsinCQ (g)

(d) The Fourier transform of this signal is

Xi(f) =2 [sinc <@> + sine <f +520>}
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so the energy spectral density is

Problem 2.30
(a) Use the transform pair

1

x1(t)=e u()<__>oz+j27rf

Using Rayleigh’s energy theorem, we obtain the integral relationship

o oo d (0.9} (0.9}
/_OO [ X1 (f)|2df:/_oomdf:/_oo |21 (t)|2dt=/0 e 2t = %

(b) Use the transform pair

r2(0) = 111 (1) = sine (7) = X2 (1)

T T

Rayleigh’s energy theorem gives

/Z|X2(f)|2df = /ZsinCQ(Tf)df:/Z|x2(t)|2dt
- [ e (e [

_am PN 20

2 4 (2nf)?
The desired integral, by Rayleigh’s energy theorem, is

/_ X (1P df = / [2+ wa)rdf

1 1
— _2a|t|dt - —2atdt
(2a)2 /_ LC 202 /0 103

(d) Use the transform pair

(c) Use the transform pair

xz3(t) =€

I3

17
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The desired integral, by Rayleigh’s energy theorem, is

I :/ X ()2 df = / sine? (v f) df

= —/ A2 (t/7)dt :—/ [1— (/7))

= =z 1—ulPduy=-=
7'/0[ u]du 37’

Problem 2.31
(a) The convolution operation gives

0, t<7-1/2
y ()= L1—e ot r_1/2<t<7+1/2
1 [efa(tfrfl/Q) _ efa(t77+1/2)] L t> T+ 1/2

«

(b) The convolution of these two signals gives

yo (t) = A (t) + tr (¢)
where tr(t) is a trapezoidal function given by
0,t<—-3/20rt>3/2
1, —1/2<t<1/2

3/24t, —3/2<t<—1/2
3/2—t,1/2<t<3/2

tr(t) =

(c) The convolution results in
) t+1/2
ys (t) = / e P (A —t)dr = / e~ dx
o t-1/2

Sketches of the integrand for various values of t gives the following cases:

JEELZ coran, £ < —1/2

1/2
ys (1) = [ petrdr+ [T eodan, —1/2 <1 <1/2
SR emedA, £ > 1/2

Integration of these three cases gives

é([ea(t+1/2) _ ea(t*1/2)] , 1< —1/2
L [emalt=1/2) _ o=a(t+1/2] " _1/2 < ¢ < 1/2
L [e—a(t—l/Q) _ e—a(t+1/2)] ,t>1/2

ys (t) =
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(d) The convolution gives

Problem 2.32
(a) Using the convolution and time delay theorems, we obtain

Yi(f) = F [e*atu (t) « I (¢t — 7')]
= Fle®u)] F[I(t—7)]

1 ,
- - & —j2nfr
- +j27rfsmc (f)e

(b) The superposition and convolution theorems give
Y2 (f) = F{IL(/2) + @]« 11 (1)}
= [2sinc(2f) + sinc (f)] sinc (f)
(c) By the convolution theorem

() = Fletm)

2a .
= WS]HC (f)

(d) By the convolution theorem (note, also, that the integration theorem can be applied
directly)

Ya(f) = Fle(@)*xu®)
1

Problem 2.33
(a) The normalized inband energy is

ELIISW) 2,0 (220)

Eiotal 7T «
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(b) The result is

By (lf|<W) /TW 9
_— = =2 sinc® (u) du
Etotal 0 ( )

The integration must be carried out numerically.

Problem 2.34
(a) By the modulation theorem

X = %{SiHC[(f—fo)%}+sinc[(f+f0)_”

= A e [F (£ ) e[ (£ 1))

(b) Use the superposition and modulation theorems to get
) el (7 -2) e (7 02)])
X = ——¢sinc | =—| 4+ z [sincz | -+ —2 | +sinc | +— +2
=" 2fo] 2 2\ fo 2\ fo

Problem 2.35
Combine the exponents of the two factors in the integrand of the Fourier transform integral,
complete the square, and use the given definite integral.

Problem 2.36
Consider the development below:

x(t)*a:(—t):/ooa:(—)\)a:(t—A)dA:/oox(ﬁ)x(t—i—ﬁ)dﬁ

—00 —00

where = —A has been substituted. Rename variables to obtain

1 T
R() = Jim o= [ o(@)a(t+9)ds

Problem 2.37
The result is an even triangular wave with zero average value of period Tp. It makes no
difference whether the original square wave is even or odd or neither.
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Problem 2.38
Fourier transform both sides of the differential equation using the differentiation theorem
of Fourier transforms to get

2nf +alY (f) = [527bf + ] X (f)
Therefore, the transfer function is

Y(f) c+j2nbf
X (f) a+j2nf

and the phase response is

arg 17 ()] = tan~t (220 <t (220

C a

Amplitude and phase responses for various values of the constants are plotted below.

Problem 2.39
(a) The find the unit impulse response, write H (f) as

5

B =5y

Inverse Fourier transforming gives

(b) Use the transform pair

A—at t =
eu(t) a+ j2nf

and the time delay theorem to find the unit impulse as

h(t) = ge*%@*‘*)u (t—3)
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Problem 2.40
Use the transform pair for a sinc function to find that

=) ()

-

because 11 ({g) = 1 throughout the region where 11 (5‘%) is nonzero.
(b) If W > B, it follows that

because 11 (%) = 1 throughout the region where II (

(a) If W < B, it follows that

S

) 1S nonzero.

Problem 2.41

(a) Replace the capacitors with 1/jwC which is their ac-equivalent impedance. Call the
junction of the input resistor, feedback resistor, and capacitors 1. Call the junction at the
positive input of the operational amplifier 2. Call the junction at the negative input of the
operational amplifier 3. Write down the KCL equations at these three junctions. Use the
constraint equation for the operational amplifier, which is V5 = V3, and the definitions for
wo, @, and K to get the given transfer function.

(d) Combinations of components giving

RC = 2.3 x 10~* seconds

and
—2 =2.5757
b
will work.
Problem 2.42
(a) By long division
() =1~ gt

R1-£RQ + ]27.(.]('

Using the transforms of a delta function and a one-sided exponential, we obtain

h(t) =8 (t) — % exp (-@t) w(t)
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(b) Substituting the ac-equivalent impedance for the inductor and using voltage division,
the transfer function is

H(f) = Ry jenfL Ry <1_ (1 || R2) /L >
R+ Ry fafl 4 jor L Ri+ Ry (R || R2) /L + j2nf

Therefore, the impulse response is

R RiR R
h(t) = RlTQRg [5 (t) - m exp <—mt> “ (t)]

Problem 2.43
The Payley-Wiener criterion gives the integral

0o ﬂfQ
= /oo Y

which does not converge. Hence, the given function is not suitable as the transfer function
of a causal LTI system.

Problem 2.44
(a) The condition for stability is

/ Tt = / " exp (—at) cos (27 fot) u (£)] dt

—00 —00
oo

& 1
= / exp (—at) |cos (27 fot)| dt < / exp (—at)dt = — < o0
0 0

a

which follows because |cos (27 fot)| < 1.
(b) The condition for stability is

/Oo Iy (1)) dt = /oo lcos (2 fol) u (1)) dt

= / |cos (27 fot)| dt — oo
0

which follows by integrating one period of |cos (27 fot)| and noting that the total integral is
the limit of one period of area times N as N — oo.
(c) The condition for stability is

[Cm@ia = [ fue-na

—0o0 —00
~dt

_ / — n (8)]%° — 00
1 t
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Problem 2.45
The energy spectral density of the output is

Gy (f) = H(HPIX (N

where )
X =
(f) 2+ j2nf
Hence
100

Gl)= [9 +(2r f)2] [4+ (2 f)2]

Problem 2.46
Using the Fourier coefficients of a half-rectified sine wave from Table 2.1 and noting that
those of a half-rectified cosine wave are related by

Xe, = X,,eIm/2

The fundamental frequency is 10 Hz. The ideal rectangular filter passes all frequencies less
than 13 Hz and rejects all frequencies greater than 13 Hz. Therefore

3A 34
y(t) = — 5 cos (207t)

Problem 2.47
(a) The 90% energy containment bandwidth is given by
Boo = — tan (0.457) = 1.0055a
2
(b) For this case, using Xa (f) =II(f/2W), we obtain
Bgg = 0.9W

(c) Numerical integration gives
Bgo =0.85 / T
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Problem 2.48
From Example 2.7

A 2A 1
x(t) = 3 + — |:COS (wot) — 3 cos (3wot) + - - ]
From the transfer function of a Hilbert transformer, we find its output in response to the

above input to be
() = A+2A ( y 7r) 1 (3 ; 7r>+
y(t) =3 - cos (wo 5 3 cos ( 3wo 5

Problem 2.49

(a) Amplitude distortion; no phase distortion.
(b) No amplitude distortion; phase distortion.
(c) No amplitude distortion; no phase distortion.
(d) No amplitude distortion; no phase distortion.

Problem 2.50
The transfer function corresponding to this impulse response is

B 2 B 2 . 2 f

The group delay is

1 d 2 f

B0 = g | ()
_ 3
9+ (2nf)?

The phase delay is

= o) (35)

PMIT omf o onf

Problem 2.51
The group and phase delays are, respectively,
0.1 0.333
Ty (f) = 2 2
14+ (0.27f)" 14 (0.6677f)

L) = 5  ltan (0.27) — tan (0667 )

™
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Problem 2.52
In terms of the input spectrum, the output spectrum is

Y(f) = X(f)+02X (f)*X(f)
- a[n(552) e (552)
(1) om0 )

() ()
vaafon (F52) 1 () +on (£52)]

where A (t) is an isoceles triangle of unit height going from -1 to 1. The student should
sketch the output spectrum given the above analytical result..

Problem 2.53
(a) The output of the nonlinear device is

y (t) = 1.075 cos (20007t) + 0.025 cos (60007¢)
The steadtstate filter output in response to this input is
z (t) = 1.075 |H (1000)| cos (20007t) + 0.025 | H (3000)| cos (60007t)

so that the THD is

(1.075)% | H (1000)/?
(0.025)% | H (3000)/?
432
1 +4Q2 (1000 — 3000)*
1849
1+ 16 x 106Q2

THD =

where H (f) is the transfer function of the filter.
(b) For THD = 0.005% = 0.00005, the equation for () becomes

1849

1716 x 100g2 00
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or

6x10°Q% = 1849x2x10%—1
Q = 152

Problem 2.54

Frequency components are present in the output at radian frequencies of 0, wi, we, 2w,
2wo, W1— wa, Wi+ ws,3wi, 3wa, 2wa— Wi, Wi+ 2wo,2wi— wa, 2wi+ wa. To use this as a
frequency multiplier, pass the components at 2wy or 2wy to use as a doubler, or at 3w; or
3wa to use as a tripler.

Problem 2.55

Write the transfer function as

—_ —j2rfto i —j2m fto
H (f) H()G H()H <2B> (&

Use the inverse Fourier transform of a constant, the delay theorem, and the inverse Fourier
transform of a rectangular pulse function to get

h (t) = H05 (t — to) — QBH()SiIlC [QB (t — to)]

Problem 2.56
(a) The Fourier transform of this signal is

X (f) = Av2mb2exp (—27r27'Qf2)

By definition, using a table of integrals,

T:L/OO e ()] dt = V2rr

z(0) J-oo
Similarly,
W= e | XDl =
T 2X(0) oo 2277
Therefore,

2
2WT = ——V2nr =1
2V 27T
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(b) The Fourier transform of this signal is

2A/

X = 1+ (27f/a)?

The pulse duration is

The bandwidth is

Thus,

Problem 2.57
(a) The poles for a second order Butterworth filter are given by

where w3 is the 3-dB cutoff frequency of the Butterworth filter. Its s-domain transfer
function is

2 2
w3 _ w3

s+ -] [s+a+p)] #FV2ustud

H(s)=

Letting wg = 27 f3 and s = jw = j27 f, we obtain

4nf2 _ 12
—Am2f2 4 /2 (2 f3) (j2rf) + 422 —f2 4+ 2 f + f3

H (j2r f) =

(b) If the phase response function of the filter is 6 (f), the group delay is

1 d

Tg(f):—%g[‘g(f)]

For the second-order Butterworth filter considered here,

V2
0(f) = — tan l(fg _%)
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Figure 2.3:

Therefore, the group delay is

1 d 2
L = 57 [tanl (f ;ff)

fs B+ 1 1+ (f/f)

V2r fA+ 2 V2rfs 1+ (F/f3)"

(c) Use partial fraction expansion of H (s) and then inverse Laplace transform H (s) /s to
get the given step response. Plot it and estimate the 10% and 90% times from the plot.
From the MATLAB plot of Fig. 2.3, fstigy =~ 0.08 and f3tgqy ~ 0.42 so that the 10-90 %
rise time is about 0.34/ f3 seconds.

Problem 2.58
(a) 0.5 seconds; (b) and (c) - use sketches to show.

Problem 2.59

(a) The leading edges of the flat-top samples follow the waveform at the sampling instants.
(b) The spectrum is

Y (f)=Xs(f) H(f)
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where
o

Xs(f)=1fs > X(f—nf)

and
H (f) = 1sinc (f1)exp (—jmf7)

The latter represents the frequency response of a filter whose impulse response is a square
pulse of width 7 and implements flat top sampling. If W is the bandwidth of X (f), very
little distortion will result if 771 >> W.

Problem 2.60
(a) The sampling frequency should be large compared with the bandwidth of the signal.
(b) The output spectrum of the zero-order hold circuit is

[e.o]

Y (f) =sinc(Tof) > X (f —nfs) exp(—jrfTy)

where fs = T;"!. For small distortion, we want Ty << W1,

Problem 2.61
The lowpass recovery filter can cut off in the range 1.97 kHz to 2.1~ kHz.

Problem 2.62

For bandpass sampling and recovery, all but (b) and (e) will work theoretically, although an
ideal filter with bandwidth exactly equal to the unsampled signal bandwidth is necessary.
For lowpass sampling and recovery, only (f) will work.

Problem 2.63
The Fourier transform is

Y(f) = %X(f—fo)+%X(f+fo)
+ [ () X (]« | 58 (F — fo) 972 4 26 (f + fo) &

= SX U= o) [1=sen(f = o)l + 5 X (F+ fo) [1 +5g0 (f + fo)
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Problem 2.64
(a) Z4 (t) = cos (wot — 7/2) = sin (wot), so

e 17
Jlgrgoﬁ/Tx(t)i(t) dt = jlgrgoﬁ/T sin (wot) cos (wot) dt

i L [ L (2u0t) de

= lim — = sin (2w
Tooo 2T | 12 0

1 2wot) |

— fm L cos (2wot) _0

T—oo 2T 4(,(.1() _T

(b) Use trigonometric identities to express x (¢) in terms of sines and cosines. Then find the
Hilbert transform of z (¢) by phase shifting by —m /2. Multiply x (¢) and ¥ (¢) together term
by term, use trigonometric identities for the product of sines and cosines, then integrate.
The integrand will be a sum of terms similar to that of part (a). The limit as T — oo will
be zero term-by-term.

(c) Use the integral definition of T (¢), take the product, integrate over time to get

/_Zx(t)f(t)dt _ AQ/_ZH(t/T) [/_Z%d/\}dt
- [T ]
. AQ/_:/;%In t=7/2

t+71/2
where the result is zero by virtue of the integrand of the last integral being odd.

‘dt:()

Problem 2.65
(a) Note that F' [jz(t)] = j [—jsen (f)] X (f). Hence

v ) = w410 — X () = SX () + 1 s ()X (1)
= ] X0
{ 3X(f), f<0
X (), >0

A sketch is shown in Figure 2.4.
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(b) It follows that
3 . .
w2 = |Jo 0+ 378 0)] exp G2nfor

~ X () =S+ (f - W)X (F - )

{ 07 f < f(]
SX(f=fo), f>1fo
A sketch is shown in Figure 2.4.

(c) This case has the same spectrum as part (a), except that it is shifted right by W Hz.
That is,

x3(t) = Ex (t) + ij?ﬁ (t)] exp (j2rWt)

- XD = |§ gl w)| x (- w)

A sketch is shown in Figure 2.4.
(d) For this signal

3 1

() = [Zm 0 -1z <t>} exp (1)

Xl = |§ - g (- Wi X (- w2

A sketch is shown in Figure 2.4.

Problem 2.66
(a) The spectrum is

Xp (f) = X (f) + 7 [=gsgn (NI X (f) = [1 +sgn ()] X (f)

The Fourier transform of z (¢) is
1 f=f\ 1. (f+ ]
X<f)_2n< 2W >+2H< 2W

J = fo
2W

Thus,
X, (1) =11
(b) The complex envelope is defined by

1y (1) = & (1) 32750

> if fo > 2W
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Xi(f)
24
Y
W 0 /4
X(f)
24
A
0 w 2w

f Hz

f. Hz

33

Xo(f) 34/2
f Hz
0 fo fo-W
X4(f)
24
A
f Hz
-w2 0 w2 3W2

Figure 2.4:
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Therefore '
(0) = (0) 2

Hence

Fla@] = Flap Ol gy =1 <f2_WfO) ‘H% =1 <%>

(¢) The complex envelope is

T(t)y=F"1 [H (%)] = 2 sinc (2W't)

Problem 2.67
For t < 7/2, the output is zero. For [t| < 7/2, the result is

a2
o2 + (2rAf)?
X {cos 27 (fo + Af)t — 0] — e/ cos 27 (fo + AF) L+ 9]}

y() =

For ¢t > 7/2, the result is
(a/2) e
a2 + (2rAf)?
X {em/z cos 21 (fo+ Af)t — 0] — e 2 cos [2m (fo + Af) t + 9]}

y(t) =

In the above equations, 6 is given by

6 = —tan"* (27rAf>

(67

2.2 Computer Exercises

Computer Exercise 2.1
% ce2_1: Computes generalized Fourier series coefficients for exponentially
% decaying signal, exp(-t)u(t), or sinewave, sin(2*pi*t)
%
tau = input("Enter approximating pulse width: °);
type_wave = input('Enter waveform type: 1 = decaying exponential; 2 = sinewave ’);
if type wave ==
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t_max = input(’Enter duration of exponential: ’);
elseif type wave ==
t _max = 1;

end

clf

a=[J;

t = 0:.01:t__max;
cn = tau;

n_max = floor(t max/tau)
forn = 1:'n max
LL = (n-1)*tau;
UL = n*tau;
if type _wave ==
a(n) = (1/cn)*quad(@integrand _exp, LL, UL);
elseif type wave ==
a(n) = (1/cn)*quad(@Qintegrand _sine, LL, UL);
end

X_approx = zeros(size(t));
forn = 1:n_max
X_approx = x_ approx + a(n)*phi(t/tau,n-1);
end
if type _wave ==
MSE = quad(@integrand _exp2, 0, t _max) - cn*a*a’;
elseif type wave ==
MSE = quad(@integrand _sine2, 0, t _max) - cn*a*a’;
end
disp("Mean-squared error:’)
disp(MSE)
disp(* )
if type wave ==
plot(t, x_approx), axis([0 t max -inf inf]), xlabel(’t’),
ylabel(’x(t); x_a p p r o _x(t))
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hold

plot(t, exp(-t))

title([’”Approximation of exp(-t) over [0, ’,num2str(t_max),’] with

contiguous rectangular pulses of width ’num2str(tau)))

elseif type wave ==

plot(t, x_approx), axis([0 t max -inf inf]), xlabel(’t’),

ylabel(’x(t); x_a _p p_r_o_x(t))

hold

plot(t, sin(2*pi*t))

title([Approximation of sin(2*pi*t) over [0, ’num2str(t max),’] with

contiguous rectangular pulses of width ’,;num2str(tau)])

end

% Decaying exponential function for ce 1

%o
function z = integrand _exp(t)
2 = expl-);

% Sine function for ce 1

%

function z = integrand _sine(t)
z = sin(2*pi*t);

% Decaying exponential squared function for ce 1

%
function z = integrand _exp2(t)
z = exp(-2*t);

% Sin"~2 function for ce 1

%o

function z = integrand _sine2(t)
z = (sin(2*pi*t)).~2;

A typical run follows:

>>ce2 1

Enter approximating pulse width: 0.125

Enter waveform type: 1 = decaying exponential; 2 = sinewave: 2
n_max =

8

c n

0.1250

Expansion coefficients (approximating pulses not normalized):
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Approximation of sin(2%pi*t) over [0, 1] with contiguous rectangular pulses of width 0.125
1 T T T T T T

a8+
0B
04

= 02r

apRrox

=
T

x(t); x

I I I I I I h 1 I
0 01 0.2 03 04 0s 06 07 og 08 1

Figure 2.5:
Columns 1 through 7
0.3729 0.9003 0.9003 0.3729 -0.3729 -0.9003 -0.9003
Column 8
-0.3729
Mean-squared error:
0.0252

Computer Exercise 2.2
% ce2_1: Computes generalized Fourier series coefficients for exponentially
% decaying signal, exp(-t)u(t), or sinewave, sin(2*pi*t)
%
tau = input("Enter approximating pulse width: );
type_wave = input('Enter waveform type: 1 = decaying exponential; 2 = sinewave ’);
if type wave ==
t _max = input("Enter duration of exponential: ’);
elseif type wave ==
t_max = 1;
end
clf
a=;
t = 0:.01:t__max;
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cn = tau;
n_max = floor(t max/tau)
forn = 1:'n_max
LL = (n-1)*tau;
UL = n*tau;
if type _wave ==
a(n) = (1/cn)*quad(@integrand _exp, LL, UL);

elseif type wave == 2
a(n) = (1/cn)*quad(@integrand _sine, LL, UL);
end
end
disp(* )
disp(’c_n’)
disp(cn
disp(’ ")
isp(
(

disp(* )
X_approx = zeros(size(t));
for n = 1:n_max
X_approx = x_ approx + a(n)*phi(t/tau,n-1);
end
if type wave ==
MSE = quad(@integrand _exp2, 0, t _max) - cn*a*a’;
elseif type wave ==
MSE = quad(@integrand _sine2, 0, t _max) - cn*a*a’;
end
disp("Mean-squared error:’)
disp(MSE)
disp(* )
if type_wave == 1
plot(t, x_approx), axis([0 t _max -inf inf]), xlabel(’t’),
ylabel(’x(t); x_a p p_r_o_x(t))

hold
plot(t, exp(-t))
title([’Approximation of exp(-t) over [0, ’,num2str(t max),’] with
contiguous rectangular pulses of width ’-num2str(tau)])
elseif type wave ==
plot(t, x_approx), axis([0 t max -inf inf]), xlabel(’t’),
ylabel(’x(t); x_a p p_r o _x(t))
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hold
plot(t, sin(2*pi*t))
title([’Approximation of sin(2*pi*t) over [0, ’,num2str(t max),’| with
contiguous rectangular pulses of width ’num?2str(tau)|)
end

% Decaying exponential function for ce 1

%o
function z = integrand _exp(t)
z = exp(-t);

% Sine function for ce 1

%

function z = integrand _sine(t)
z = sin(2*pi*t);

% Decaying exponential squared function for ce 1

%o
function z = integrand _exp2(t)
z = exp(-2*t);

% Sin"~2 function for ce 1

%

function z = integrand _sine2(t)
z = (sin(2*pi*t)).~2;

A typical run follows:

>>ce2 2
Enter type of waveform: 1 = HR sine; 2 = FR sine; 3 = square; 4 = triangle: 1

Computer Exercise 2.3

% ce2 _4.m: FFT plotting of line spectra for half-rectified, full-rectified sinewave, square
wave,

% and triangular waveforms

%

clf

I wave = input(’Enter type of waveform: 1 = positive squarewave; 2 = 0-dc level
triangular; 3 = half-rect. sine; 4 = full-wave sine ’);

T =2;

del t = 0.001;

t = O:del t:T;
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Half-rectified sine wave spectra
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Figure 2.6:

L = length(t);

fs = (L-1)/T;

del f=1/T,;
n=1[01234567809];

if I wave ==

x = pls_fn(2*(t-T/4)/T);
X th = abs(0.5*sinc(n/2));

disp(* )
disp(’ 0 - 1 level squarewave’)
elseif I wave == 2

x = 2%rgl f(2*(t-T/2)/T)-1;
X th =4./(pi"2*n.”2);

disp(’ 0-dc level triangular wave’)

elseif I wave ==

x = sin(2*pi*t/T).*pls_fn(2*(t-T/4)/T);
X _th = abs(1./(pi*(1-n."2)));
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X_th(2) = 0.25;

X _th(4) = 0; % Set n = odd coeficients to zero (even indexed because of MATLAB)
X th(6) = 0;

X_th(8) = 0;

X_th(10) = 0;

disp(* )

disp(’ Half-rectified sinewave’)
elseif | wave ==

x = abs(sin(2*pi*t/T));

X _th = abs(2./(pi*(1-n.72)));

X _th(2) = 0; % Set n = odd coeficients to zero (even indexed because of MATLAB)
X_th(4) = 0;

X_th(6) = 0

X_th(8) = 0;

X_th(10) = 0;

disp(* ")

disp(’ Full-rectified sinewave’)

end

X = 0.5*ft(x)*del _t; % Multiply by 0.5 because of 1/T 0 with T 0 =2
f = 0:del fifs;

Y = abs(X(1:10));

Z=[nY X_th];

subplot(2,1,1),plot(t, x), xlabel(’t’), ylabel("x(t)’)
subplot(2,1,2),plot(f, abs(X),’0’),axis([0 10 0 1}),...
xlabel('n’), ylabel(’|X nl|’)

A typical run follows:

>>ce2 3
Enter type of waveform: 1 = positive squarewave; 2 = 0-dc level triangular; 3 = half-rect.
sine; 4 = full-wave sine 3
Half-rectified sinewave
Magnetude of the Fourier coefficients
n FFT Theory
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0

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000

Computer Exercise 2.4

0.3183

0.2501
0.1062
0.0001
0.0212
0.0001
0.0091
0.0000
0.0051
0.0000

CHAPTER 2. SIGNAL AND LINEAR SYSTEM THEORY

Figure 2.7:

0.3183
0.2500
0.1061
0
0.0212
0
0.0091
0
0.0051
0

Make the time window long compared with the pulse width.

Computer Exercise 2.5

% ce2_5.m: Finding the energy ratio in a preset bandwidth

%

I _wave = input('Enter type of waveform: 1 = positive squarewave; 2 = triangular; 3 =
half-rect. sine; 4 = raised cosine. ’);

tau = input("Enter pulse width ’);

per_cent = input('Enter percent total desired energy: ’);
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clf

T = 20;
f=1;

G =1

del t = 0.01;
t = O:del t:T;
L = length(t);
fs = (L-1)/T;
del f=1/T;
if I wave ==

x = pls_ fn((t-tau/2) /tau);
elseif I wave ==
x = trgl fn(2*(t-tau/2)/tau);
elseif I wave == 3
x = sin(pi*t/tau).*pls _fn((t-tau/2)/tau);
elseif I wave ==
x = abs(sin(pi*t/tau).”2.*pls_fn((t-tau/2)/tau));
end
X = fft(x)*del_t;
f1 = 0:del f*tau:fs*tau;
G1 = X *conj(X);
NN = floor(length(G1)/2);
G = GI1(1:NN);
ff = f1(1:NN);
f = f1(1:NN+1);
E tot = sum(G);
E_f = cumsum(G);
E W=[0E f{]/E tot;
test = E_ W - per_cent/100;
L_test = length(test);
k=1,
while test(k) <=0
k = k+1;
end
B = k*del f;
it wave == 2
taul = tau/2;
else
taul = tau;
end

43
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subplot(3,1,1),plot(t/tau, x), xlabel(’t/\tau’), ylabel(’x(t)’), axis([0 2 0 1.2])
itI wave ==
title(["Energy containment bandwidth for square pulse of width ’,
num?2str(tau),” seconds’])
elseif I wave ==
title(['Energy containment bandwidth for triangular pulse of width ’,
num?2str(tau),” seconds’])
elseif I wave == 3
title(['Energy containment bandwidth for half-sine pulse of width 7,
num?2str(tau),” seconds’])
elseif | wave ==
title(["Energy containment bandwidth for raised cosine pulse of width ’,
num2str(tau),” seconds’])
end
subplot(3,1,2),semilogy(ff*taul, abs(G./max(QG))), xlabel(’f\tau’), ylabel("G’), ...
axis([0 10 -inf 1])
subplot(3,1,3),plot(f*taul, E_ W), xlabel("f\tau’), ylabel CE_ W’), axis([0 4 0 1.2])
legend ([num2str(per _cent), ’ bandwidth % X (pulse width) = ’, num2str(B*tau)|,4)

A typical run follows:

>>ce2 5

Enter type of waveform: 1 = positive squarewave; 2 = triangular; 3 = half-rect. sine; 4
= raised cosine. 3

Enter pulse width 2

Enter percent total desired energy: 95

Computer Exercise 2.6
The program for this exercise is similar to that for Computer Exercise 2.5, except that the
waveform is used in the energy calculation.

Computer Exercise 2.7
Use Computer Example 2.2 as a pattern for the solution (note that in earlier printings of
the book “Computer Excercise 2.2” should be “Computer Example 2.2”).
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COMPUTER EXERCISES

Energy containrment bandwidth for half-gine pulse of width 2 seconds
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Chapter 3

Basic Modulation Techniques

3.1 Problems

Problem 3.1
The demodulated output, in general, is

yp (t) = Lp{z. (t) 2 cos[wet + 0 (t)]}

where Lp {e} denotes the lowpass portion of the argument. With

xe (t) = Aem (1) cos [wet + ¢
the demodulated output becomes

yp (t) = Lp {24cm () cos [wet + o] cos [wet + 0 ()]}

Performing the indicated multiplication and taking the lowpass portion yields

yp (t) = Aem (t) cos [0 (t) — ¢o]
If 0(t) = 0o (a constant), the demodulated output becomes

yp (t) = Acm (t) cos (0o — oo
Letting A. = 1 gives the error

e(t) =m(t)[1 = cos (6o — ¢o)]
The mean-square error is

(2 (1)) = (m? (1) [1 = cos (60 — 60))”)

1
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where (-) denotes the time-average value. Since the term [1 — cos (6g — ¢g)] is a constant,
we have

(e2 (1)) = (m? (£)) [1 — cos (B — o))

Note that for 0y = ¢q, the demodulation carrier is phase coherent with the original modu-
lation carrier, and the error is zero. For 6 (t) = wot we have the demodulated output

yp (t) = Aem (t) cos (wot — ¢g)
Letting A. = 1, for convenience, gives the error
e(t) =m(t)[1 — cos (wot — ¢o)]
giving the mean-square error
(2 (1)) = (m? (t) [1 = cos (wot — 60)]° )

In many cases, the average of a product is the product of the averages. (We will say more
about this in Chapters 4 and 5). For this case

<€2 (t)> _ <m2 (t)> <[1 — cos (wot — ¢0)]2>

Note that 1 — cos (wot — ¢g) is periodic. Taking the average over an integer number of
periods yields

<[1 — cos (wot — ¢0)]2> = (1 —2cos (wot — ¢p) + cos? (wot — o))

1 3
= 1+5=3
Thus 3
COEEICE0)
Problem 3.2

Multiplying the AM signal
Ze (1) = Ac[1 4+ amy, (t)] coswet

by z.(t) = Ac[l + amy, (t)] coswt and lowpass filtering to remove the double frequency
(2w.) term yields
yp (t) = Ac [1 + amy, ()] cos 0 (¢)
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Figure 3.1:

For negligible demodulation phase error, 6(¢) = 0, this becomes
yp (t) = Ac + Acamy, (t)

The dc component can be removed resulting in A.amy, (t), which is a signal proportional
to the message, m (t). This process is not generally used in AM since the reason for using
AM is to avoid the necessity for coherent demodulation.

Problem 3.3

A full-wave rectifier takes the form shown in Figure 3.1. The waveforms are shown in
Figure 3.2, with the half-wave rectifier on top and the full-wave rectifier on the bottom.
The message signal is the envelopes. Decreasing exponentials can be drawn from the peaks
of the waveform as depicted in Figure 3.3(b) in the text. It is clear that the full-wave
rectified z, (t) defines the message better than the half-wave rectified z. () since the carrier
frequency is effectively doubled.

Problem 3.4
Part (m2 (1)) a=0.4 a=0.6 a=1
a 1/3 Eff:5,1% Eff:10.7% Eff:25%
b 1/3 Eff =5.1% Eff =10.7% Eff = 25%
C 1 Eff = 13.8% Eff = 26.5% Eff = 50%
Problem 3.5

By inspection, the normalized message signal is as shown in Figure 3.3.

Thus
2 T
=5t 0<t<g
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and T2 5 ) 3
<m2(t)>22/ zt dt:z 2 1 Z :1
" T Jo T T\T/) 3\2 3
Also
Ac[1+a] = 40
Ac[l—a] = 10
This yields
1—1—(1_4_0_4
l—a 10
or
l1+a = 4—4a
5a = 3
Thus
a=0.6

Since the index is 0.6, we can write
A:[140.6] =40

This gives
40
Ac=— =2
1.6 g

This carrier power is
1 1
P, = 5,45 =3 (25)2 = 312.5 Watts

The efficiency is
0.6)°(3)  0.36

Efp = > = =0.107 = 10.7%
1+(0.6)°(3) 336
Thus p
sb
— =0.107
Pc + Psb

where Py, represents the power in the sidebands and P, represents the power in the carrier.
The above expression can be written

Py, = 0.107 + 0.107 Py,
This gives

0.107

Py—=——" _
= 10-0.107

P.=97.48 Watts
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Problem 3.6
For the first signal
T
T=G Mn (t)=m(t) and FEjp=81.25%
and for the second signal
T 1
T = %, my (t) = gm(t) and FEpp=14.77%

Problem 3.7

(a) The first step in the solution to this problem is to plot m(t), or use a root-finding
algorithm in order to determine the minimum value of m (¢). We find that the minimum
of m(t) = —11.9523, and the minimum falls at ¢ = 0.0352 and ¢ = 0.0648. Thus the

normalized message signal is

my, (t) [9 cos 207t — 7 cos 607t]

~ 11.9523
With the given value of ¢ (t) and the index a, we have

Zc (t) = 100 [1 + 0.5my, (t)] cos 2007t
This yields

xc(t) = —14.6415cos 1407t + 18.8428 cos 1807t
-+100 cos 2007t
+18.8248 cos 2207t — 14.6415 cos 2607t

We will need this later to plot the spectrum.
(b) The value of (m2 (t)) is

i (sr) (2) o7+ 7] o

(c)This gives the efficiency

(0.5) (0.455)

— 10.213%
1+ (0.5)2(0.455) ’
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50 50
A A
B B
A B A A B A
O O O T
-130-110-100-90-70 70 90 100 110130
Figure 3.4:

(d) The two-sided amplitude spectrum is shown in Figure 3.4.

where
_14.4615

A = 7.2307

and
18.8248

B = =9.4124

The phase spectrum results by noting that A is negative and all other terms are positive.
(e) By inspection the signal is of the form

ze(t) = a(t)e(t)

where a(t) is lowpass and c(¢( is highpass. The spectra of a(t) and ¢(t) are do not overlap.
Thus the Hilbert transform of ¢(t) is

Ze(t) = a(t)e(t)

in which ¢(t) = 100 cos 2007¢. This the envelope is

e(t) = 100\/(12 (t) cos? 2007t + a2(t) sin? 2007t = 100a(t)

where
a(t) = [1 4+ 0.5my, (t)]

Problem 3.8
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a) (t) = 1—16 [9 cos 207t 4 7 cos 607t
b) (m2 (1)) = (%)° (3) [(9) + (7)?] = 0.2539

__0.25(0.2539) __ _
c) Efp = T+0.25(0.2539) — 0.05969 = 5.969%

d) The expression for x. (t) is

1
zc(t) = 100 [1 + 3 (9 cos 207t + cos 607t) | cos 2007t

= 10.9375cos 1407t + 14.0625 cos 1807t
+100 cos 2007t
+14.0625 cos 2207t + 10.9375 cos 2607t

Note that all terms are positive so the phase spectrum is everywhere zero. The amplitude
spectrum is identical to that shown in the previous problem except that

A = (10.9375) = 5.46875

| — Do =

B = 7(14.0625) = 7.03125

(e) As in the previous problem, the signal is of the form

where a(t) is lowpass and c(¢( is highpass. The spectra of a(t) and ¢(t) are do not overlap.
Thus the Hilbert transform of c(t) is

Fe(t) = a(E(t)

where ¢(t) = 100 cos 2007¢. This the envelope is

e(t) = 100\/a2(t) cos? 2007t + a2(t) sin® 2007t

1
= 100a(t) = 100 [1 + D (9 cos 207t + cos 607t)

Problem 3.9
The modulator output

xc (t) = 40 cos 2m (200) ¢ + 4 cos 27 (180) t + 4 cos 2 (220) ¢

can be written
xc (t) = [40 + 8 cos 27 (20) t] cos 27 (200) ¢
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or
8
xc(t) =40 |1+ 10 &8 27 (20) t| cos 2w (200) ¢
By inspection, the modulation index is

8

=—=0.2
40

a
Since the component at 200 Hertz represents the carrier, the carrier power is
L 2
P, = 3 (40)° =800 Watts
The components at 180 and 220 Hertz are sideband terms. Thus the sideband power is
Psb =

1
(4)% + 5 (4> =16 Watts

Thus, the efficiency is

Py 16
Ef = = = 0.0196 = 1.96
I P+ Py~ 800+ 16 %

Problem 3.10

A=14.14 B =8.16 a = 1.1547

Problem 3.11
The modulator output

xc (t) = 20 cos 2 (150) ¢ + 6 cos 27 (160) ¢ + 6 cos 27 (140) ¢

is
12
xe(t) =20 |1+ 50 08 27 (10) ¢| cos 2w (150) ¢

Thus, the modulation index, a, is
12

=—=06
20

a

The carrier power is
1
Fe=3 (200 =200 Watts
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and the sideband power is

1 1
Py =3 (6)% + 3 (6) =36 Watts
Thus, the efficiency is
36
Eff = —— =0.1525
77200 + 36

Problem 3.12
(a) By plotting m (t) or by using a root-finding algorithm we see that the minimum value
of m(t) is M = —3.432. Thus

my, (t) = 0.5828 cos (27 fi,t) + 0.2914 cos (47 fnt) + 0.5828 cos (107 fr,t)
The AM signal is

ze(t) = Ac[l+0.7Tmy, (t)] cos2m fet

= 0.2040A4.cos 27 (fo — 5fm)t
+0.1020 A, cos 27 (f. — 2fm) t
+0.2040 A, cos 27 (fe — fm)t
+A.cos2nf.t
+0.2040 A, cos 27 (fe + fm)t
+0.1020 A, cos 27 (fo + 2fm) t
+0.2040 A, cos 2 (fo + 5fm) t

The spectrum is drawn from the expression for x. (¢). It contains 14 discrete components
as shown

Comp Freq Amp  Comp Freq Amp
1 —f.—5fn 01024, 8  f.—5fm 0.1024,
2 —fe—2fm 0.051A, 9 fe—2fm 0.051A,
3 —fo—fm 01024, 10  f.— fm 0.1024,
4 —fe 0.5A, 11 fe 0.5A.
5  —fot fm 01024, 12 fo+ fm 0.1024,
6 —fe+2fm 0.051A. 13 fe+2fm 0.051A,
7 —fe+5fm 0.102A, 14 fe+5fm 0.102A,

(b) The efficiency is 15.8%.

Problem 3.13
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Filter
Characteristic
A A
8 m? (t
iy A
B 5 :
0 w 2w f.-W f, f.+W 2f,
Figure 3.5:

(a) From Figure 3.75
x(t) =m(t) + coswet

With the given relationship between x (t) and y (t) we can write
y(t) = 4{m (t) + coswet} + 10 {m (t) + coswet}?
which can be written
y () = 4m (t) + 4 coswet + 10m? (t) + 20m (t) cos wet 4 5 + 5 cos 2wt
The equation for y (¢) is more conveniently expressed
y (t) =5+ 4m (t) + 10m? (t) + 4 [1 + 5m (t)] coswet + 5 cos 2wt

(b) The spectrum illustrating the terms involved in y (¢) is shown in Figure 3.5. The center
frequency of the filter is f. and the bandwidth must be greater than or equal to 2W. In
addition, f. — W > 2W or f. > 3W, and f. + W < 2f.. The last inequality states that
fe > W, which is redundant since we know that f. > 3W.

(c) From the definition of m (t) we have

m (t) = Mmy, (t)

so that
g(t) =4[1+5Mmy, ()] coswet

It follows that
a=08=5M
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Thus

0.8
M=—=0.16

5
(d) This method of forming a DSB signal avoids the need for a multiplier.
Problem 3.14

1
Hy (f) =1~ g s (f + 1)
1 1, . .
xysp (t) = §Acm (t) cosw,t — §Acm (t) sinw,t

Problem 3.15

For the USB SSB case, the modulator output is a sinusoid of frequency f. + f,, while for
the LSB SSB case, the modulator output is a sinusoid of frequency of f. — fy,.

Problem 3.16
Using Figure 3.13 and the phases given in the problem statement, the modulator output
becomes

re(t) = 2 cos[(we—w)t +4
+M cos [(we +w1) t + 61]

2
B
—1—5 cos [(we + w2) t + 07]

Multiplying x. () by 4 cosw.t and lowpass filtering yields the demodulator output
yp (t) = Aecos (w1 — @) + A (1 — €) cos (w1t + 01) + B cos (wat + 62)

For the sum of the first two terms to equal the desired output with perhaps a time delay,
A1 must equal—¢. This gives

yp (t) = Acos (wit + ¢) + B cos (wat + 02)

which we can write

0 0
yp (t) = Acoswi <t+ —l> + Bcosws <t+ —2>
w1 w2

For no distortion, yp (t) must be of the form m (¢t — 7). Thus

01
w1 w2
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so that

Thus, the phase must be linear. The fact that ¢ = —#1 tells us that the filter phase response
must have odd symmetry about the carrier frequency.

Problem 3.17
We assume that the VSB waveform is given by

ze(t) = %As cos (we —w1)t
+%A (1 —¢)cos(we+wr)t
+%B cos (we +wa)t
We let y (t) be z. (t) plus a carrier. Thus
y(t) =z (t) + K cosw,t
It can be shown that y (¢) can be written

Y (t) = y1 (t) coswe (t) + y2 (t) sinwet

where

y1(t) = g coswit + g coswat + K

y2 (1) = <A5 + %) sin w1t — gsinwzt
Also

y(t) = R(t) cos (wet + 0)

where R (t) is the envelope and is therefore the output of an envelope detector. It follows
that

R(t) = \Jvf (t) + 45 (1)

For K large, R (t) = |y1 ()|, which is m (t) + K, where K is a dc bias. Thus if the detector
is ac coupled, K is removed and the output y (t) is m (t) scaled by 3.

Problem 3.18
The required figure appears in Figure 3.6.

Problem 3.19
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Desired
Signd

Local
Oscillator

Signal at
Mixer
Output

a’zl% 2601"0%

Image

Signal /\
| w
Image Signal
at Mixer Output /\ /\
| | w
| |

3C‘)z _26‘1 w,

Figure 3.6:
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Since high-side tuning is used, the local oscillator frequency is

fro = fi+ fir
where fi, the carrier frequency of the input signal, varies between 5 and 25 M H z.
ratio is
_ Jir+25
fir+5
where frp is the IF frequency expressed in M Hz. We make the following table
frr,MHz R
0.4 4.70
0.5 4.63
0.7 4.51
1.0 4.33
1.5 4.08
2.0 3.86

A plot of R as a function of f;g is the required plot.
Problem 3.20

For high-side tuning we have
fro = fi+ fir = 1120 + 455 = 1575 kHz
frvace = fi+2frr = 1120+ 910 = 2030 kHz

For low-side tuning we have

fro = fi— fir = 1120 — 455 = 665 kHz
fivace = fi—2frp = 1120 — 910 = 210 kHz

Problem 3.21
For high-side tuning
fro = fi+ frir = 1120+ 2500 = 3620 kHz
frvace = fi +2frr = 1120 + 5000 = 6120 kHz

For low-side tuning
fro = fi— fir =1120 — 2500 = —1380 kHz
fro = 1380 kHz

fivace = fi—2frr = 1120 — 5000 = —3880 kHz
fro = 3880 kHz

15

The
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Figure 3.7:

In the preceding development for low-side tuning, recall that the spectra are symmetrical
about f = 0.

Problem 3.22
By definition

ze (t) = Accos [wet + kpm (t)] = A cos [wet + kpu(t — to)]

The waveforms for the three values of k, are shown in Figure 3.7. The top pane is for
k, = 7, the middle pane is for k, = —m/2, and the bottom pane is for k, = /4.

Problem 3.23
Let ¢ (t) = [ coswpt where wy, = 27 f,,. This gives

Te2 (t) = A.Re {ejwctejﬁ COSwmt}

Expanding a Fourier series gives

o9
eJﬁCOSwmt: § : Cnejnwmt

n=—oo
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where
w /wm
m i —j
Cn _ 5 e]ﬁ COSwmte anmtdt
Y

—7/wm

With x = wy,t, the Fourier coefficients become

1 T .
= e]BCOSxe—]na:dx
2w

—Tr

Since cos x = sin (x + %)

Cn i /ﬂ- ej[ﬁsin(a:+%)—nx]dx

:27r

With z = x + 7, the preceding becomes

—T

3r/2
C. = i "/ el [Bsin y—ny+ng]dy
" 27 —7/2

U O Y
C, =% {%/ e][ﬂsmy—ny]dy}
—T

where the limits have been adjusted by recognizing that the integrand is periodic with
period 27. Thus

This gives

and

Taking the real part yields

ze2 () = Ac i JIn (B) cos {(wc + nwm) t + %T}

n=—oo

The amplitude spectrum is therefore the same as in the preceding problem. The phase
spectrum is the same as in the preceding problem except that =F is added to each term.

Problem 3.24
Since sin(z) = cos(x — ) we can write

xe3(t) = Acsin(wet + Bsinw,t) = A, cos (wct — g + (Bsin wmt)

which is | )
ze3(t) = AcRe {ej(wct*ﬂ'/Z)ej sin wmt}
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Since )
el sinwmt _ Z Jn(lg)ejnwmt
we have
ze3(t) = AcRe {@j(wctﬂ/Z) Z Jn(ﬂ)ejm‘)mt}
Thus N
Tes(t) = Ae Z Jn(B3) Re {eﬂwcﬁnwmw/a}
Thus

ze3(t) = A, i Jn () cos [(wc + nwm) t — g]

n=——oo

Note that the amplitude spectrum of x.3(¢) is identical to the amplitude spectrum for both
zc1(t) and xe2(t). The phase spectrum of x.3(t) is formed from the spectrum of z.1(t) by
adding —7/2 to each term.

For x.4(t) we write

Tea(t) = Acsin(wet + [ coswmt) = Accos (wct — g + B cos wmt)

Using the result of the preceding problem we write

xc4<t>=AcRe{ej<“C”/2’ > (8) ej<nwmt+"—;>}

This gives
$c4(t> = Ac Z Jn(ﬁ) Re {6j(wct+nwmt7%+%)}

n=—oo

Thus o
zea(t) = A. Z Jn(B) cos [(wc + nwm) t + g(n - 1)}

n=—oo

Compared to z.1(t), zc2(t) and z3(t), we see that the only difference is in the phase spec-
trum.

Problem 3.25
From the problem statement

Zc (t) = Accos[2m (40) ¢t + 10sin (27 (5) t)]
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The spectrum is determined using (3.101). Since f. = 40 and f,,, = 5 (it is important to
note that f. is an integer multiple of f,,) there is considerable overlap of the portion of the
spectrum centered about f = —40 with the portion of the spectrum centered about f = 40
for large 8 (such as 10). The terms in the spectral plot, normalized with respect to A,
are given in Table 3.1 for f < 0 (positive frequency terms and the term at dc). The terms
resulting from the portion of the spectrum centered at f = 40 are denoted Sao and the terms
resulting from the portion of the spectrum centered at f = —40 are denoted S_40. Given
the percision of the Table of Bessel coefficients (Page 131 in the textbook), we have overlap
for |f| < 45. Where terms overlap, they must be summed. The sum is denoted St in Table
3.1. In developing the Table 3.1 be sure to remember that J_,(8) = —J,(8) for odd n.
The power must now be determined in order to find A.. With the exception of the dc term,
the power at each frequency is S2A42/2 (the power for negative frequencies is equal to the
power at positive frequencies and so the positive frequency power can simply be doubled to
give the total power with the dc term excepted). The power at dc is S2A2 = (0.636)2A2.
Carring out these operations with the aid of Table 3.1 gives the total power

0.8036A42% = 40

40
A = | —— = 7.0552
0.8036 099

The waveform z.(t) is illustrated in the top pane of Figure 3.8. The spectrum, normalized
with respect to A, is illustrated in the bottom frame. The fact that x.(¢) has a nonzero
dc value is obvious.

which is

Problem 3.26
We are given Jg (3) = —0.2601 and J; (3) = —0.3391. Using

2 10 (8) = It (B)

In+1 (5) = 3

with 8 = 3 we have

) 2

Jn+1 (3) = gan (3) = Jn-1(3)
With n =1,

2
J2(3) = 31 (3)—Jo(3)
2
= 3 (0.3391) + 0.2601 = 0.4862
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Table 3.1: Data for Problem 3.25

/ Saso | S—40 St
125 | 0.001 0 0.001

120 | 0.002 0 0.002
115 | 0.005 0 0.005
110 | 0.012 0 0.012
105 | 0.029 0 0.029
100 | 0.063 0 0.063
95 | 0.123 0 0.123
90 | 0.207 0 0.207
85 | 0.292 0 0.292
80 | 0.318 0 0.318
75 | 0.219 0 0.219
70 | —0.014 0 —0.014
65 | —0.234 0 —0.234
60 | —0.220 0 —0.220
55 | 0.058 0 0.058
50 | 0.255 0 0.255

45 | 0.043 | 0.001 [ 0.044
40 | —0.246 | 0.002 | —0.244
35 | —0.043 | 0.005 | —0.038
30 | 0.255 | 0.012 | 0.067
25 | —0.058 | 0.029 | —0.029
20 | —0.220 | 0.063 | —0.157
15 | 0.234 | 0.123 | 0.357
10 | —0.014 | 0.207 | —0.193
5 | —0.217 | 0.292 | 0.075
0 0.318 | 0.318 | 0.636
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xc(t)

0O 002 004 006 008 01 012 014 016 018 02

0;50 WMV%TWT@UT T"’fT TU@LWWTT:&W !
Figure 3.8:
With n = 2,
Js(3) = %Jz 3)— 1 (3)

4
= 3 (0.04862) + 0.3391 = 0.3091
Finally, with n = 3 we have

Ja(3) = 2J3(3)— 12 (3)
= 2(0.3091) + 0.4862 = 0.1320

Problem 3.27

The amplitude and phase spectra follow directly from the table of Fourier-Bessel coefficients.
The single-sided magnitude and phase spectra are shown in Figure 3.9. The magnitude
spectrum is plotted assuming A, = 1.
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3.1. PROBLEMS 23

Problem 3.28
The modulated signal can be written

2o (t) = Re |10 + 3ei2m(20)t 4 56—j27r(20)t] J2m(100)¢

We will concentrate on the term in brackets, which is the complex envelope described in
Chapter 2. Denoting the complex envelope by Z. (t), we can write

Te(t) = [10+ 3cos2m (20t) + 5 cos 27 (20) ]
+7 [3sin 27 (20t) — 5 sin 27 (20) ¢]
= [10 + 8cos 27 (20t)] — j [2sin 27 (20) ¢]

It follows from the definition of x. (¢) that

T (t) = R(t) 2O

Thus

R?(t) = [10+ 8cos2m (20t)]? + 4sin? 2 (20) ¢

= 134 4 160 cos 27 (20) t + 30 cos 27 (40) ¢

This gives

R(t) = /134 + 160 cos 27 (20) t 4 30 cos 27 (40) ¢
Also (20)

—2sin 27 (20) ¢
t) = tan
¢ (£) = tan 10 + 8 cos 27 (20) ¢

Problem 3.29

Since sinz = cos (m — %), we can write

2. (t) = Re {ejzoom [5e—j40m 1104 3ej(407rt7%):|}

2o (t) = Re {a(t) ejzoomf}

where

a(t) = (5cos407t + 10 + 3sin407t)
+j (5sin 407t — 3 cos 407t)
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Thus if we write z. (t) as
xe (t) = R (t) cos (2007t 4 ¢ (t))

the envelope, R (t), is given by

NI

R(t) = [(5 cos 407t + 10 + 3sin 407t)? + (5sin 40wt — 3 cos 407t )

and the phase deviation, ¢ (t), is given by

5sin 407t — 3 cos 407t

t) = tan !
O (1) = tan Jo e OnT + 3sin d0nt

The envelope, R (t), can be simplified and expressed in several different forms.

Problem 3.30
(a) Since the carrier frequency is 1000 Hertz, the general form of z, (¢) is

xe (t) = Accos [2m (1000) t + ¢ ()]
The phase deviation, ¢ (t), is therefore given by
o (t) = 20t rad

The frequency deviation is

d

d—(f = 40t rad/sec
o 1dé 20

—=_Z H

o df - t ertz

(b) The phase deviation is
¢ (t) = 2w (500) 2 — 27 (1000) ¢  rad

and the frequency deviation is

¢

7 47 (500) ¢t — 27 (1000) rad/sec

20007 (t — 1) rad/sec

or
1 do
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(c) The phase deviation is
¢ (t) = 27 (100) t = 2007t rad

and the frequency deviation is

Z—f = 2007 rad/sec
. 1 do

— 1

o dt 00 Hertz

which should be obvious from the expression for z. (t).
(d) The phase deviation is

¢ (t) = 2007t + 10Vt rad

and the phase deviation is

do 1 1 5
9 -1 — =
o 007 + 5 (10)t~2 = 2007 + 7 rad/sec
o 1 do 5
—— =100 H
21 dt * 271'\/1_5 ertz
Problem 3.31

(a) The phase deviation is
t
6(t) = 27(30) / (8)dt — 480mt, <4
0

The maximum phase deviation is ¢(4) = 4807 (4) = 19207. The required plot is simply

0, t<0
o(t) =4 480mt, 0<t<4
19207, t>4
(b) The frequency deviation, in Hz, is
0 t<0
1 do )
- T _ = <
== =30m(t) = 240, 0<t<4

0 t>4
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The required sketch follows simply.
(c) The peak frequency deviation is 8 f; = 8 (30) = 240 Hertz
(d) The peak phase deviation is

4
27 (30) / (8)dt = 27 (30) (8) (4) = 1920 rad
0
The modulator output power is

1
P:§A5: (100)2 = 5000  Watts

|

Problem 3.32

(a) The message signal is

0, t<4
t—4, 4<t<6
8—t 6<t<8
0, t>8

The phase deviation is

o(t) = 2wfd[<t—4>dt

= 607 (—4) (t — 4) + 307 (* — 16)
= 307 (t* —8t+16), 4<t<6

t
6) = s [ B=0dt+6(6)
= 1207 + 60 (8) (t — 6) — 307 (¢* — 36)
1207 — 307 (t* — 16t +60), 6<t<8
Also

(t) = 240w, t>8
o) = 0, t<4

The sketches follow immediately from the equations.
(b) The frequency deviation in Hertz is 30m(t).

(c) The peak phase deviation = 2407 rad.

(d) The peak frequency deviation = 120 Hertz.
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(e) The carrier power is, assuming a sufficiently high carrier frequency,

1
P= §A§ = —(100)> = 5000  Watts

N

Problem 3.33
The frequency deviation in Hertz is the plot shown in Fig. 3.76 with the ordinate values
multiplied by 25.The phase deviation in radians is given

t t
o (1) 227de/ m(a)da:507r/ m (o) da
For 0 <t <1, we have
t
6 (t) = 507 / 2ada = 507t?
0

For1 <t <2

() = ¢(1)+507r[(5—a)da:507r+2507r(t—1)—257r(t2—1)
= 1757 + 2507t — 257t?
For2<t<3
6 (1) = 6(2) + 507 /2 "3da = 2257 1 1507 (t — 2)
For3<t<4

o (t) = ¢(3) + 50m /3 2da = 3757 + 1007 (¢ — 3)

Finally, for ¢ > 4 we recognize that ¢ (t) = ¢ (4) = 4757. The required figure results by
plotting these curves.

Problem 3.34
The frequency deviation in Hertz is the plot shown in Fig. 3.77 with the ordinate values
multiplied by 10. The phase deviation is given by

(b(t):27de/tm(oz)doc:ZOw/tm(a)da

For 0 <t <1, we have
t
o (t) = 207 / ado = 107t?
0
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For1<t<2

pt) = ¢(1)+2()7T/t(a—2)doz:107r—|—1()7r(t2—1)—4()7r(t—1)
1
= 107 (2 — 4t +4) = 107 (t — 2)°

For2 <t<4

o(t) = H(2)+ 207 /t(6 —2a)da = 0 + 207 (6) (t — 2) — 207 (£* — 4)
2
= —20m(t? — 6t + 8)

Finally, for ¢ > 4 we recognize that ¢ (t) = ¢(4) = 0. The required figure follows by plotting
these expressions.

Problem 3.35
The frequency deviation in Hertz is the plot shown in Fig. 3.78 with the ordinate values
multiplied by 5. The phase deviation in radians is given by

o(t) = 27de/tm(a)da: IOW/tm(a)da
For 0 <t <1, we have
t
b (t) = 107r/ (—20a)do = —107t?
0

For1 <t<2
t
o (t) :gb(l)—f—l()w/ 2dov = —10m + 207 (¢t — 1) = 107 (2t — 3)
1
For 2 <t¢t<25

o(t) = ¢(2)+ 107 /t(lo — 4a)da = 107 + 107 (10) (t — 2) — 107 (2) (¢* — 4)
2
= 107(—2t> + 10t — 11)

For 25 <t <3

6(t) = 6(25)— 107 / " oda = 157 — 20m(t — 2.5)
2.5
= 10m(—2t +5.5)
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For 3 <t <4

o) = ¢3)+ 107 /t (2a — 8) dav = 5 + 107 (t? — 9) — 107(8) (¢ — 3)
3
= 107(t? — 8t +15.5)

Finally, for ¢ > 4 we recognize that ¢ (t) = ¢(4) = —5m. The required figure follows by
plotting these expressions.

Problem 3.36

(a) The peak deviation is (12.5)(4) = 50 and f,, = 10. Thus, the modulation index is
2 =5.

(118) The magnitude spectrum is a Fourier-Bessel spectrum with § = 5. The n = 0 term falls
at 1000 Hz and the spacing between components is 10 Hz. The sketch is that of Figure 3.24
in the text.

(c) Since (3 is not < 1, this is not narrowband FM. The bandwidth exceeds 2 fp,.

(d) For phase modulation, k, (4) =5 or k, = 1.25.

Problem 3.37
The results are given in the following table:

Part f; D=5f/W B=2D+1)W

a 20 0.004 50.2 kHz
b 200 0.04 52 kHz
c 2000 04 70 kHz
d 20000 4 250 kHz

Problem 3.38
From
ze (t) = A Z JIn (B) cos (we + wm) t
n=——oo
we obtain

(1) =542 3 ()

n=—oo

We also know that (assuming that z.(¢) does not have a significant dc component - see
Problem 3.24)

<m§ (t)> = <A§ cos? [wet + ¢ (t)]>
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which, assuming that w. > 1 so that z. (t) has no dc component, is

(22 (1)) = 542

This gives

from which

Problem 3.39
Since

1 [T . . 1 [T
-7

27 L —

we can write

Jn(ﬂ):—/ cos(ﬂsina:—nm)daj—i—j% sin (Bsinx — nx) dx

27 T -

The imaginary part of J, (0) is zero, since the integrand is an odd function of x and the
limits (—m, 7) are even. Thus

In (B) = iﬂ /7r cos (Bsinx — nx) dx

Since the integrand is even

In (B) = ;/Oﬂcos (Bsinz — nz) dr

which is the first required result. With the change of variables A = 7 — z, we have

T (8) = l/oﬂcos[ﬁsin(w—)\)—n(w—)\)](—l)d)\

™

1 ™
= —/ cos [Bsin (1 — ) — nw + nA] dA
™ Jo

Since sin (7 — \) = sin A, we can write

In (B) = l/ﬁcos[ﬁsin)\—i—n)\—n7r]d/\
™ Jo
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Using the identity
cos (u — v) = cosucosv + sinusinv

with
u = @sin A+ nA
and
v=nm

yields

1 [7 .

Jn(B) = — / cos [Bsin A + nA] cos (nm) dA
™ Jo

1 ™
+-— / sin [@sin A + nA\] sin (n7) dA
T Jo

Since sin (nm) = 0 for all n, the second integral in the preceding expression is zero. Also

cos (nm) = (—=1)"

Thus -
Jn (B) = (=1)" %/ cos [Bsin A + nA| dA
0
However -
J_n(B) = ;/ cos [Bsin A + nA| dA
0
Thus

In (B) = (=1)" Jn (B)

or equivalently

Problem 3.40

) Peak frequency deviation = 80 Hz

) & ( ) = 8sin (207t)
c) B
d) P, = 50 Watts, Pp = 16.76 Watts
(e) The spectrum of the input signal is a Fourier Bessel spectrum with 8 =8. The n =0
term is at the carrier frequency of 500 Hz and the spacing between components is 10 Hz.
The output spectrum consistes of the n = 0 term and three terms each side of the n = 0
term. Thus the output spectrum has terms at 470, 480, 490, 500, 510, 520 and 530 Hz.

(a
(b
(
(
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Problem 3.41

33

The required spectra are given in Figure 3.10. The modulation indices are, from top to

bottom, 3 =0.5, 3=1,6=2,3="5, and 3 = 10.
Problem 3.42

We wish to find k& such that

k
Py =J§(10)+2) " Jg (10) > 0.80

n=1
This gives k = 9, yielding a power ratio of P. = 0.8747. The bandwidth is therefore
B =2k f, =2(9)(150) = 2700 Hz
For P. > 0.9, we have k = 10 for a power ratio of 0.9603. This gives

B =2k f,, = 2(10) (150) = 3000 Hz

Problem 3.43
From the given data, we have

foo =110 kHz  f4, =005  fz, =n(0.05) =20

This gives
20
= — =4
n=Gos 400
and
fey =n(100)  kHz = 44 MHz

The two permissible local oscillator frequencies are

feo., = 100—-44 =56 MHz
foo, = 100+44 =144 MHz

The center frequency of the bandpass filter must be f. = 100 MHz and the bandwidth is

B=2(D+1)W =2(20+ 1) (10) (10%)

or
B =420 kHz
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Problem 3.44
For the circuit shown

(=2 f
X(f)  R+j2nfL+
or
H(f) = !
]. +] (27TfTL — w%(j)
where
L 1073 6
= —:—:17
TL B 108 0

¢ = RC=(10% (107°) =10"°

A plot of the amplitude response shows that the linear region extends from approximately
54 kHz to118 kHz. Thus an appropriate carrier frequency is

118454

fo= 3 86  kHz

The slope of the operating characteristic at the operating point is measured from the am-
plitude response. The result is
Kp=~8(107%)

Problem 3.45
We can solve this problem by determining the peak of the amplitude response characteristic.

This peak falls at
1

To= 27V LC
It is clear that f, > 100 MHz. Let f, = 150 MHz and let C = 0.001 (10~!2). This gives

= G 1.126 (1073)
p

We find the value of R by trial and error using plots of the amplitude response. An
appropriate value for R is found to be 1 M€). With these values, the discriminator constant

is approximately
Kp ~8.5(1079)

Problem 3.46
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For A; = A. we can write, from (3.176),
xy (1) = A¢ [coswet + cos (we + w;) 1]

which is
xp (t) = A [(1 + coswit) cos wet — sinwjt sin w,t]

This yields
xr (t) = R(t) cos [wet + 1 (t)]

where ]
sin w;t

Y (t) = tan™1 [ wit] wit

" | =tan"?! [tan ==
1+ cos wit} [ 2

up (6) = 1d (27Tfit) _ lfi

This gives

2m dt 2 2
For A; = —A., we get

P(t) = tan* [—_ sinwit ] = —tan"?! [—sin wit ]

1 — cosw;t 1+ cosw;t
Since )
1 —cosx 2 2 2
we have - -
_ -1|_ ~r 4 _z_
¥(#) = tan [ tan<2 2)} 272
Thus 1 d [(2rnf 1
1 d it R W s
yD(t)_27rdt< 2 2>_2f1

Finally, for A; > A. we see from the phasor diagram that

and

Problem 3.47
From Example 3.5, m (t) = Au (t). Thus

t
<;5(t):k:f/ Au(a)da = Akst, >0

35
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o(t)
o(t)
A | S L (t)
Ky
t
0
Figure 3.11:
Also AKork
_ Thf
O(s)= s2(s+ Kr)

Taking the inverse transform gives

— L *KTt_L
Q(t)—Akf (t—f-KTe KT)u(t)

The phase error is ¢ (t) = ¢ (t) — 0 (t). This gives

_ Aky

=T (1- eiKTt) u(t)

¥ (t)

The maximum phase error occurs as t — oo and is clearly Aky/Kr. Thus we require

2= %
and
Kr =5Ak;

The VCO constant is contained in K. The required sketch follows.

Problem 3.48
For m (t) = Acoswp,t and
¢ Ak
o(t) = Ak:f/ coswmada = —L sinwpt

Wm
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and Ak

f
B(s) = 0
R

The VCO output phase is

Kr  AkKr
s+ Kr (s+Kr)(s2+w2)

O(s) =P (s)

Using partial fraction expansion,® (s) can be expressed as

AksKr 1 S Kr
— f _ +
Kr?+w3, [s+Kr s2+wi @ s2+4w3,

O (s)
This gives, for t > 0

Ak K
0(t) ol [e_KTt

T t+ —L sin wy,t
= — COS W S1n W

m

The first term is the transient response. For large Kr, only the third term is significant.
Thus,

1 do AksK2,

) =R d = K, (K2 to2)

COS Wyt

Also, since K7 is large, K% + w2 ~ K% This gives

Ak
ey (t) ~ =L

COS Wt
14

and we see that e, (t) is proportional to m (t). If ky = K,,, we have

ey (t) = m (t)

Problem 3.49
The Costas PLL is shown in Figure 3.57. The output of the top multiplier is

m (t) coswet [2 cos (wet + 0)] = m (t) cos O + m (t) cos (2wt + 0)
which, after lowpass filtering, is m (t) cos §. The quadrature multiplier output is
m (t) coswet [2sin (wet + 0)] = m (t) sinf + m (¢) sin (2wt + 6)
which, after lowpass filtering, is m (t) sin §. The multiplication of the lowpass filter outputs

is
m (t) cos Om () sin @ = m? (t) sin 26
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dy [ dt
W
A
Figure 3.12:
Phase Loop Filter
’ Detector ’ and Amplifier > vCo
A
& (t) W
s, )
Figure 3.13:

as indicated. Note that with the assumed input m (¢) cos w.t and VCO output 2 cos (w.t + ),
the phase error is #. Thus the VCO is defined by

o dip
- — 3, — _Kl/ v
dt - di ev (t)

This is shown below.

Since the % intersection is on a portion of the curve with negative slope, the point A
at the origin is a stable operating point. Thus the loop locks with zero phase error and zero
frequency error.

Problem 3.50

With x (t) = A2 fot, we desire eq (t) = Acos2r (%) fot. Assume that the VCO output is a
pulse train with frequency % fo. The pulse should be narrow so that the seventh harmonic
is relatively large. The spectrum of the VCO output consists of components separated by
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This component (the fundamental)
tracks the input signal

Bandpass filter

Figure 3.14:

% fo with an envelope of sinc(7f), where 7 is the pulse width. The center frequency of the
bandpass filter is % fo and the bandwidth is on the order of % fo as shown.

Problem 3.51
The phase plane is defined by
Y =Aw — K;sint (t)

at ¥ =0, Y = 1, the steady-state phase error. Thus

Aw Aw
gl (2YY) -l
Y4 = sin <Kt ) sin <727r (100)>

For Aw = 27 (30)
g = sin 1 U = 17.46 degrees
5 100 ’

For Aw = 27 (50)
. _1( 90
Yy, =sin ! (1—00> = 30 degrees

For Aw = 27 (80)

Yy = sin 1 <%> = 53.13 defrees
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For Aw = —27(80)

Voo = sin~? <ITS(§)) = —53.13 degrees

For Aw = 27 (120), there is no stable operating point and the frequency error and the phase
error oscillate (PLL slips cycles continually).

Problem 3.52
From (3.228)
O(s) KF(s) K (ii?)
D(s) s+KF(s) g 1K, (TTZ)
which is
O(s) Ki(s+a) B Ki(s+a)
D(s) s(s+e)+Ki(s+a) 2+ (Ki+e)s+ K
Therefore
§% + 2wps + w2 = s? + (K; +¢€) s+ Kia
This gives
Wn = Kta
and
C B Kt + ¢
N 2\/Kta
Problem 3.53

Since wy, = 27 (100) we have

VIEa = 27 (100)

or
Kia = 47® (10%)
Since
_L_Kt—F&_ lth
T2 2J/Ka  2(2r)(100)
we have
K, = Y2@m)(100) _ o0
1.1
Thus

e =0.1K; = 80.78
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Xpy (1) X, (1) Xoam (t)
o (e >
X, (t)
Pulsetrain
Figure 3.15:
and
_Ar®(10f) 1887
“T TR0t Y

Problem 3.54

From (3.247), we see that the phase deviation is reduced by 1—1—%[( pK,. The VCO constant
is 25 Hz /volt. Thus
K, = 2w (25) rad/s/volt

we may then write

Di 5 1
22 o5 =14—Kp(21)(2
D, 04 5=1+5 Kp(2m)(25)

which gives
14+25Kp =125

Thus
Kp =10.46

Problem 3.55

A system converting PWM to PAM can be realized as illustrated in Figure 3.15.
The operation should be clear from the waveforms shown in Figure 3.16.

The integrator can be realized by using a capacitor since, for a capacitor,

Multiplication by the pulse train can be realized by sampling the capacitor voltage. Thus,
the simple circuit is as illustrated in Figure 3.17.
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Figure 3.16:

XPWM (t)
|
0 T 2T AT
X, (1)
|
0 T 2T 4T
X, (1)
|
0 T 2T 4T
XPAM (t)
| |
0 T 2T a7
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Xouma (1) =1 (1) >< X (1)

sampling switchis
. closed for
switch closes nT -7 <t <nT
al=nT g _
to restart C
integration
Figure 3.17:
Problem 3.56

Let A be the peak-to-peak value of the data signal. The peak error is 0.5% and the peak-
to-peak error is 0.01 A. The required number of quantizating levels is

_ 2 _qpp<on =
0014~ 100= q

so we choose ¢ = 128 and n = 7. The bandwidth is
B =2Wklogy q = 2Wk(T7)

The value of k is estimated by assuming that the speech is sampled at the Nyquist rate.
Then the sampling frequency is f; = 2W = 8kHz. Each sample is encoded into n = 7
pulses. Let each pulse be 7 with corresponding bandwidth % For our case

1 1
- nfy  2Wn

T

Thus the bandwidth is )
— =2Wn =2Wlog, q
.

andsok=1. Fork=1
B =2(8,000) (7) =112 kHz

Problem 3.57
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Let the maximum error be AA where A is the peak-to-peak message signal. The peak-to-
peak error is 2AA and the minimum number of quantizing levels

A 1
dmin = 534 T 2

The wordlength is given by
1
= |log, —
n [ogz 5 /\}

where [z] is the smallest integer greater than or equal to x. With £ =1 (as in the previous
problem), this gives a normalized bandwidth of

B 1
By = — — |1og, —

N ow [ng 2)\]
We make the following table

A log(s) B

N

0.001 8.966 9
0.005 6.644 7
0.01 5.644 6
0.05 3.322 4
0.1 2.322 3
0.2 1.322 2
0.4 0.322 1
0.5 0 0

A plot of By as a function of A gives the required plot.

Problem 3.58
The message signal is
m(t) = 4sin27(10)t + 5sin 27(20)t

The derivative of the message signal is
dm (t)
dt

The maximum value of dm (t) /dt is obviously 2807 and the maximum occurs at ¢ = 0.
Thus

= 807 cos 27 (10) t 4 2007 cos 27 (20t)

5
Tz > 2807
o 2807 280
fo> 22— 25T 5600

oo 0.057
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X, (BW=W) X, (BW=W)

X, (BW =2W)
X, (BW =4W)
X (BW =4W)

Output

Figure 3.18:

Thus, the minimum sampling frequency is 5600 Hz.

Problem 3.59

One possible commutator configuration is illustrated in Figure 3.18. The signal at the
point labeled “output” is the baseband signal. The minimum commutator speed is 2W
revolutions per second. For simplicity the commutator is laid out in a straight line. Thus,
the illustration should be viewed as it would appear wrapped around a cylinder. After
taking the sample at point 12 the commutator moves to point 1. On each revolution, the
commutator collects 4 samples of x4 and s, 2 samples of x3, and one sample of z1 and x7.
The minimum transmission bandwidth is

B = ZWi:W+W+2W+4W+4W

= 12W

Problem 3.60
The single-sided spectrum for z (t) is shown in Figure 3.19.
From the definition of y (¢) we have

Y (s) = a1 X (f) + a2 X (f) » X (f)
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Figure 3.19:

The spectrum for Y (f) is given in Figure 3.20. Demodulation can be a problem since it may
be difficult to filter the desired signals from the harmonic and intermodulation distortion
caused by the nonlinearity. As more signals are included in z (¢), the problem becomes more
difficult. The difficulty with harmonically related carriers is that portions of the spectrum
of Y (f) are sure to overlap. For example, assume that f, = 2f;. For this case, the harmonic
distortion arising from the spectrum centered about f7 falls exactly on top of the spectrum
centered about fo.
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Y(f)
ai_ 2aW
2 /\ /\ /\
| | | | | |
| | | | | | f
f,—f, f, f, 2f, f,+f, 2f,

Figure 3.20:
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Chapter 4

Probability and Random Variables

4.1 Problem Solutions

Problem 4.1
S = sample space is the collection of the 25 parts. Let A; = event that the pointer stops
on the ith part, i = 1,2, ...,25. These events are exhaustive and mutually exclusive. Thus

P(A;) =1/25

(even number) = P (2 or 4 or --- or 24) = 12/25;

a) P

) P (Ass) = 1/25;
P

P

(

(b
(c)
(d)

(4 or 5 or 9) = 3/25;
(number > 10) = P (11,12,---, or 25) = 15/25 = 3/5.

Problem 4.2
(a) Use a tree diagram similar to Fig. 4.2 to show that

4 (4. 332 37 432 37432 47332
PBK24) = —{— 3= |+ 38— |+ === |+= 3===
(3K,24) 52{51 { 504948] * [ 504948} t I [504948] t I [ 504948“
= 9.2345 x 1076

(b) Use the tree diagram of Fig. 4.2 except that we now look at outcomes that give 4 of a
kind. Since the tree diagram is for a particular denomination, we multiply by 13 and get

A3 /. 2 148\ 483 2 1] 484 3 2 1
Pldofakind) — 130 2|3 (32 148y 4832 13 4843 2 1
(4 of a kind) {52 [51 < 504948>+51504948] 5251504948}
— 0.0002401
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(c) The first card can be anything. Given a particular suit on the first card, the probability
of suit match on the second card is 12/51; on the third card it is 11/50; on the fourth card
it is 10/49; on the fifth and last card it is 9/48. Therefore,

121110 9
P (all it) =1———— =10.001981
(all same suit) F1E0 19 18 0.00198

(d) For a royal flush

P (A, K,Q, J, 10 of same suit) = FSEIE0 4048 — 1.283 x 1078

(e) The desired probability is

4
P(Q|A, K, J,10 not all of same suit) = i 0.833

Problem 4.3
P(A,B) P(A)P(B)
P(A,C) = P(A)P(C)
P(B,C) = P(B)P(CO)
P(A,B,C) P(A)P(B)P(C)
Problem 4.4

A and B being mutually exclusive implies that P (A|B) = P (B|A) = 0. A and B being
statistically independent implies that P (A|B) = P (A) and P (B|A) = P (B). The only
way that both of these conditions can be true is for P (A) = P (B) = 0.

Problem 4.5
(a) The result is

P(AB) =1— P (1 or more links broken) =1— (1 - q2)2 (1—gq)
(b) If link 4 is removed, the result is

P (AB] link 4 removed) =1 — (1 —¢*) (1 —q)
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(c) If link 2 is removed, the result is
P (AB]| link 2 removed) =1 — (1 — q2)2
(d) Removal of link 4 is more severe than removal of link 2.

Problem 4.6
Using Bayes’ rule

pp) = LI

where, by total probability

P(B) = P(B|A)P(A)+ P(B[4)P(4) = P(B|A)P(A)+[1- P (B[A)] P (4)
(0.9) (0.4) + (0.4) (0.6) = 0.6

Therefore

p(ap =00D g6
Similarly,

p(aB) = LEA P4 (B]‘fzg (4)
with

P (B) = P (B|A) P (A) + P (B|A) P (A) = (0.1) (0.4) + (0.6) (0.6) = 0.4

Thus

P (A|B) =

(0.1)(0.4)
o4 0.1

Problem 4.7
(a) P (AQ) = 03, P (AQ, Bl) = 005, P (Al, Bg) = 005, P (Ag, Bg) = 005, P(Bl) = 0157 P (BQ) =
0.25; P (Bs) = 0.6.

Problem 4.8
See the tables below for the results.
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| Yspotsup | Xi | P(X;1=u1)) | | Sspots up | Xo | P(Xo =) ||

2 1 | 1/36 2 1
3 9 [2/36 3 1
4 16 | 3/36 4 1 15/36
5 55 | 4/36 5 1
6 36 5/36 6 1

@) 19 | 6/36 (b) 7 0
g 64 | 5/36 8 0
9 31 | 4/36 9 0
10 100 | 3/36 10 0 21/36
11 121 | 2/36 11 0
12 144 | 1/36 2 0

Problem 4.9

The cdf is zero for z < 0, jumps by 1/8 at x = 0, jumps another 3/8 at x = 1, jumps
another 3/8 at x = 2, and jumps another 1/8 at = 3. The pdf consists of an impulse of
weight 1/8 at x = 0, impulses of weights 3/8 at x = 1 and 2, and an impulse of weight 1/8
at x = 3.

Problem 4.10

(a) As & — oo, the cdf approaches 1. Therefore B = 1. Assuming continuity of the cdf,
F, (10) = 1 also, which says A x 103 =1 or A = 1073,

(b) The pdf is given by

. dFX (.SL‘)
 dx
The graph of this pdf is 0 for ¢t < 0, the quadratic 3 x 107322 for 0 < z < 10, and 0 for

t > 10.
(c) The desired probability is

fx (x) =3 x 10732%u (z) u (10 — z)

P(X>T7)=1-Fx(7)=1-(10"%)(7)° = 1 - 0.343 = 0.657

(d) The desired probability is

P(3< X <T7)=Fx(7)— Fx (3) =0.316

Problem 4.11
(a) A= q
(b) B =5;
(c) C=1/2;
(d)D=r1/7
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Problem 4.12
(a) Factor the joint pdf as

Ixy (z,y) = VAexp [— |z]] VAexp [— |y|]

With proper choice of A, the two separate factors are marginal pdfs. Thus X and Y are
statistically independent.

(b) Note that the pdf is the volume between a plane which intersects the x and y coordinate
axes one unit out and the fxy coordinate axis at C. First find C' from the integral

ly
/ / Ixy acydacdy—lor// C(l—z—y)dxdy=1

This gives C' = 6. Next find fx (z) and fy (y)

11—z _xQ .
fx(ac)z/0 G(I—x—y)dy:{?)(l ) 0sz<l

0, otherwise

and

1-y Y
fy(y)z/0 6(1—$_y)d$:{3(1 Y) 0<y<1

0, otherwise

Since the joint pdf is not equal to the product of the two marginal pdfs, X and Y are not
statistically independent.

Problem 4.13

fffXY (x, y)dxdy =1 gives C = 1/255;
( ) Fxv (0.1,1.5) = LEL5 — 0.0098
(¢) fxy (z,3) = {(1+39~’)/255, 0<z<6

0, otherwise

(d) By integration, fy (y) = 6(1;5?’), 0 <y <5, so the desired conditional pdf is

_ ! (w y _ _1tay

Substitute y = 3 to get the asked for result.

<r<6,0<y<5

Problem 4.14
(a) To find A, evaluate the double integral

o o0 oo o0
/ / fxy (x,y)dedy = 1 :/ / Azye~ ) dady
—o0 J —00 0 0
o o0
= A/ xe_xdx/ ye Ydy
0 0
A
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Thus A = 1.

(b) Clearly, fx (x) = ze™"u (z) and fy (y) = ye Yu (y)
(c) Yes, the joint pdf factors into the product of the marginal pdfs.

Problem 4.15
(a) Use normalization of the pdf to unity:

/ az2u(z —a)dr = / oz 2dr = 2271 / =1

Hence, this is the pdf for any value of a.
(b) The cdf is

FX(w)z/x az_Qu(z_a)dzz{( 0, z<a

% l—a/z), z>a
(c) The desired probability is

1, a>10

P(Xz10)=1—P(X<10)=1—FX(10):{a/m a <10

Problem 4.16

The result is
exp(—y/202)

>0
fri) =4 Ve S
0, y<0

Problem 4.17
First note that
P(Y=0)=P(X<0)=1/2

For y > 0, transformation of variables gives

dg' (y)

) = i (0) |2

z=9~'(y)

Since y = g (z) = ax, we have g~! (y) = y/a. Therefore

fr (v) =
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For y = 0, we need to add 0.56 (y) to reflect the fact that Y takes on the value 0 with
probability 0.5. Hence, for all y, the result is

exp (— 547
fﬂwzéaw+——%§;lmw

where u (y) is the unit step function.

Problem 4.18
(a) The normalization of the pdf to unity provides the relationship

A/ eVl gy = 2A/ e dr =24/b=1
—00 0

where the second integral follows because of evenness of the integrand. Thus A = b/2.
(b) E[X] = 0 because the pdf is an even function of x.
(c) Since the expectation of X is zero,

o0 b o0
0% =E {XQ} = / —z2e 7l gy = b/ zle Y dx = 2/b?
—o0 2 0
where evenness of the integrand has again been used, and the last integral can be found in
an integral table.

Problem 4.19
Use the fact that £ {[X -E(X )]2} > 0 (0 only if X = 0 with probability one). Expanding,

we have F [X?] — {E [X]}? > 0if X #0.

Problem 4.20

For the uniform distribution, see Example 4.21. The mean for the Gaussian pdf follows
by a change of variables and the normalization property of the Gaussian pdf. Its variance
follows by defining the random variable Y = X — m, which has zero mean, and using a
tabulated definite integral. The mean and variance of the Rayleigh random variable can be
obtained by using tabulated definite integrals. The mean of a Laplacian random variable is
zero by the evenness of the pdf. The variance was obtained in Problem 4.18. The mean and
variance of the single-sided exponential pdf are easily found in terms of tabulated integrals.
The mean of the hyperbolic pdf is zero by virtue of the evenness of the pdf, and its variance
is worked out below. The mean and variance of the Nakagami-m pdf can be put in terms
of tabulated definite integrals. The mean and variance of the binomial random variable is
worked out beginning with (4.162). The mean and variance for the Poisson and geometric
distributions follow similarly. For the variance of the hyperbolic pdf, consider

© 22 (m—1)hm™ ldz © 22 (m—1) " Ldx
p(xy = [ o = /
)= S = e
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where the second integral follows by evenness of the integrand in the first integral, and the
absolute value on z is unnecessary because the integration is for positive z. Integrate by
parts twice to obtain

E[X?) = (m-1)nm" { [xQ ht h)_m_ll + /oo Zo(et h)_deI}
0 0

-m+1 m—1

The first term is zero if m > 3. Therefore

2h?
(m—2)(m—3)

E[X?] :th—l/ z(x+h) """ de = ,m>4
0

Problem 4.21

(a) A=b[1— e*bB]_l;

(b) The cdf is 0 for # < 0 and 1 for > B. For 0 <z < B, the result is (A4/b) (1 — e7"7);
(c) The mean is

1 e B
(d) The mean-square is
2471 8 AB?
27 _ 4|11 ¢ _ —bB
B[x?) =% [bz . (1+bB)] i

where A must be substituted from part (a.).
(e) For the variance, subtract the result of part (c) squared from the result of part (d).

Problem 4.22
(a) The integral evaluates as follows:

—2/202 omn eny on+1,2n oo

2n\ __ * on € — > — 2n _—vy
E{X }—/_Ooac 7\/mdm 2/0 (2\/5031) ﬁdy N y"e Ydy

where y = x/ (21/ 20). Using a table of definite integrals, the given result is obtained.
(b) The integral is zero by virtue of the oddness of the integrand.

Problem 4.23

BlX] = /_Za:{%f(a:—ll)—l—%[u(x—?))—u(x—?)]}da;

1 [ 1 [T 9
= 5/ .%‘f(.%‘—4)dl’+§/3 wdm-i

—0o0
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E[X2] :/OO $2{%f(x—4)+%[u(x—3)—u(m—?)]}dm:%
ok =EB[X] - B x]== -3 ==

Problem 4.24
Regardless of the correlation coefficient, the mean of Z is

E{Z} =FE{3X —4Y} =3E{X} —4E{Y} =3(2) —4(1) =2
The variance of Z is

var(2) = EB{[z-E(2)}

_ E{3X 1Y = 3E(X) +4B(V)]*}

— E { 3(X -X) - }

— B{9(X-X)-2 (X X) (Y =Y) +16(Y - V)?}
90% + 1603 — 240 x0yoxy

Putting in numbers, the results for the variance of Z are: (a) 107; (b) 83.76; (c) 51.23; (d)
14.05.

Problem 4.25
Consider independent Gaussian random variables U and V' and define a transformation

g1 (u,v) =2 =pu++/1—p?uand g3 (u,v) =y =u

The inverse transformation is u = y and v = (z — py) / (1 — p2) /2 Since the transforma-

tion is linear, the new random variables are Gaussian. The Jacobian is (1 — p2)_1/ ®. Thus

the joint pdf of the new random variables X and Y is

2 2
— w2402 T 2pxy+ty
fxy (2,y) = ¢ = eXp[ 207(1-7%) }
Xy \Z,Y =
_ 2 2 2(1 _ 2
1 2no wmgT o) 202 (1 — p?)
-1
v=gy " (z,y)

Thus X and Y are equivalent to the random variables in the problem statement and which
proves the desired result. To see this, note that

E{XY) = E{(pU+ ﬂv) U} = po?
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which proves the desired result.

Problem 4.26

Divide the joint Gaussian pdf of two random variables by the Gaussisn pdf of Y, collect all
exponential terms in a common exponent, complete the square of this exponent which will
be quadratic in x and y, and the desired result is a Gaussian pdf with

E{X|Y} =mg + 22
0y

(Y —my) and var (X]Y) = 0% (1 —p?)
Problem 4.27

Convolve the two component pdfs. A sketch of the two component pdfs making up the
integrand show that there is no overlap until z > —1/2, and the overlap ends when z > 3.5.
The result, either obtained graphically or analytically, is given by

0, < —-0.5

(z40.5)/3, —05<2<05
fz(z)=1¢ 1/3, 05 <2z<25

—(2—-35)/3,25<2<35

0, 2>35

Problem 4.28

(a) E[X]=0,E [X?] =1/32 =var[X];
(b) The pdf of Y is

4
Ty (y) = 36,8@,3‘/3

(c)

=
=
[

E[2+3X]=2,

E [(2 + 3X)2}

E[4412X +9X%] =4+ 12E [X] + 9E [X?]
= 4412+ 9/32 = 4.28125,

o2 = 4.28125 — 22 =0.28125

=
=
I

Problem 4.29
(a) The characteristic function is

My (jv) = —-

a—jv
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(b) The mean and mean-square values are E [X] = 1/a and E [X?] = 2/a®.
(c) var[X] = 1/a?.

Problem 4.30

The required distributions are

Pk) = <Z>pk(1—p)n_k (Binomial)

o—(k—np)® /[2np(1-p)]
(Laplace)

2mnp (1= p)

k
P(k) = %e”p (Poisson)

A comparison is given below:

H n,p ‘ k | Binomial | Laplace ‘ Poisson H
3,1/5 10 0.512 0.396 0.549

(a) 1 0.384 0.487 0.329
2 0.096 0.075 0.099
3 0.008 0.0014 0.020
” n,p ‘ k ‘ Binomial | Laplace | Poisson ”
3,1/10 | 0 0.729 0.650 0.741
(b) 1 0.243 0.310 0.222
2 0.027 0.004 0.033
3 0.001 1x107% [ 0.003
|| n,p | k | Binomial | Laplace | Poisson ||
10,1/5 | 0 | 0.107 0.090 0.135
11]0.268 0.231 0.271
21 0.302 0.315 0.271
31 0.201 0.231 0.180
(c) 4 10.088 0.090 0.090
51 0.026 0.019 0.036
6 | 0.005 0.002 0.012
71 79%x107% | 1.3x107* | 3.4x1073
8| 7.0x107° | 4.1x107% | 8.6x10~%
9] 4.1x107% | 7.1x1078 | 1.9x10~*

11
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” n,p | k | Binomial | Laplace ‘ Poisson ”
10,1/10 | 0 | 0.348 0.241 0.368
1|0.387 0.420 0.368
21 0.194 0.241 0.183
3] 0.057 0.046 0.061
(d) 4 10.011 0.003 0.015
5| 1.5x1073 | 6x107° 3.1x1073
6| 1.4x10~% | 3.9x10°7 | 5.1x10°*%
713.6x1077 |6.3x10713 | 3.4x1073
819.0x107Y | 1.5x1071 | 1x107°
9| 1x10710 [ 1.2x107%0 | 1x10~ "

Problem 4.31

(a) P (5 or 6 heads in 20 trials) = 3,5 ¢[20!/k! (20 — k)1 27
(b) P (first head at trial 15) = (1/2)(1/2)14 =3.052 x 107°
(

¢) P (50 to 60 heads in 100 trials) = Y3 5 g2 '

20 = 0.0518

Problem 4.32

(a) p—26(25)( 4) (21) = 358, 800;
(b) N, = (2 ) = 456, 976;

(c)

c The answers are the reciprocals of the numbers found in (a) and (b).

Problem 4.33
(a) The desired probability is

2,710\ /1\"
P (fewer than 3 heads in 10 tosses) = Z ( I ) (§>
k=0
= (1+10+45)27" =0.0547

(b) npg = 10(1/2) (1/2) = 2.25; np = 5. The Laplace-approximated probability is

ZQ: o—(k=5)*/5
P(< 3 heads in 10 tosses) = -
k=0 VO

1

_ 5, —16/5 | ,—9/5) _
= (e Fe16/5 4 ) 0.0537

(c) The percent error is

0,0547 — 0.0537

2 _
0.0547 x 107 = 1.84%

% error =
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Problem 4.34
P (3 or more errors in 10°) = 0.08

Problem 4.35
First note that

oo o0
/ e 3 gy = / e300 gy = £
o o a

(a) In the joint Gaussian pdf, let

e i)

ox 2%

Then the joint Gaussian pdf becomes

u? — 2puv + UT

fxy (z,y) = kexp [— 20— 2

Complete the square in v to obtain

fxv (2.y) = kexp [—%} exp (—u?/2)

Use the definite integral above to integrate over v with the result

! exp [—7@ — mX)Q]
A /27ra?X

fx (x) = y/2m (1= p?) oF exp (—u?/2) = 20%

The pdf of Y can be found in a similar manner.
(b) First find the characteristic function:

(z—mx)?
o)

Mx (jv) = E{ej”X} :/ el = g

1/ 271'0%(

Put the exponents together and complete the square in the exponent to get

1
2(73(

* 1 1
Mx (jv) = / exp |:—§0"2X’U2 +jmxv} exp [— (w —mx —jva_QX)2 dx
—o© 27ra?x
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Use the definite integral given above to get

1
M (jv) = exp [ijX - ?7%(”2}

It is then easy to differentiate and get
E[X]=—jMy (jv) =0 = mx

and

E [X?] = (=) M (jv) =0 = 0% +m5
from which it follows that the variance is 0%
Problem 4.36
(a) K =1/m;
(b) E'[X] is not defined, but one could argue that it is zero from the oddness of the integrand
for this expectation. If one writes down the integral for the second moment, it clearly does
not converge (the integrand approaches a constant as |z| — 00).
(c) The answer is given;
(d) Compare the form of the characteristic function with the answer given in (c) and do a
suitable redefinition of variables.

Problem 4.37
(a) The characteristic function is found from

My (jv) =FE {ej”Y} = E{eij?:lX?} =F {ﬁ ej”Xz?}
i=1

But

0o ) e—$2/202

E{ej”XiQ} = e p— [
—c0 V2mo?

/ (1/20%=0)?
/oo o~ (1/20%—jv)z

—c0 V2mo?

2

dz

= (1- j2v(72)_1/

which follows by using the definite integral defined at the beginning of Problem 4.35. Thus
My (jv) = (1 - j2ve?) /?

(b) The given pdf follows easily by letting a = 202 in the given Fourier transform pair.
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pdf comparison for b = 4

15 20 25 30
pdf comparia‘\'ron for M =16

0.08 r
— Chi-square pdf
006 H — Saussian approx.
=
:;D.Dfl
0.02r-

Figure 4.1:

(c¢) The mean of Y is
E[Y]= No*

by taking the sum of the expectations of the separate terms of the sum defining Y. The
mean-square value of Xi2 is

2 — i90e2 -1/2
E[(Xz)ﬂ:(—jfd o f "

Thus,
var [(Xf)Q} = 30* — o = 20*

Since the terms in the sum defining Y are independent, var[Y] = 2No*. The mean and
variance of Y can be put into the definition of a Gaussian pdf to get the desired approxi-
mation.
(d) A comparison of the cases N =4 and N = 16 is shown in Figure 4.1.

Note the extreme difference between exact and approximation due to the central limit
theorem not being valid for the former case.
(e) Evident by direct substitution.
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Problem 4.38 , \
This is a matter of plotting Q (z) = [>° de and Qg (x) = BXP\(/;—# on the same

set of axes.

Problem 4.39
By definition, the cdf of a Gaussian random variable is

p o mm)? _ (u—m)?
[ 202 d 1 0 e 202 d
Fx (x) = ——du=1- —du
(=) —0 V2mo? ¢ V2ro?
Change variables to
U—m
v =
o

with the result that

[

v

T oeT2 r—m
Fx(z)=1- . mduzl—@( . >

o

A plot may easily be obtained by a MATLAB program. It is suggested that you use the
MATLAB function erfc(x) = % [.7 exp (—t2) dt.

Problem 4.40
The exact probability is

kog, kop, <1
< = — < < =
P(|X|<kox)=P(—kox < X <kox) { 1 koy > 1
Chebyshev’s bound is
1
P(|X|§kUX)21—ﬁ7k>0

A plot is left to the student.
Problem 4.41
(a) The probability is

11 ,—(z—12)%/3°

— 0o T

_ %erfc (1/\/:%) — 0.398
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(b) This probability is

P(10 < X <12)

(c) The desired probability is

P(11 < X < 13)

(d) The result is

P(9< X <12)

Problem 4.42
Observe that

- [

17

12 ,—(2—12)*/%

e = % - Q (2/v15)
- %erf (2/v30) = 0197

13 ,—(z—12)%/%

=129 (1/«/%)
— erf(1/\/%) — 0.204

12 ,—(2—12)*/%°

= % ~Q (3/\/5)
. %erf (3/\/:%) = 0.281

m)2 fx (z)dx

= /a:—m>k(7 (x - m) Ix (x) o

> / k2o fx (z) da
|z—m|>ko

= K20?P{|X —m| > ko} = k*¢* {1 — P[|X —m| > ko|}

or

1
P[IX —m| <ko] 21~
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Problem 4.43
The mean is 0 by even symmetry of the pdf. Thus, the variance is

var [X] = E[X?]

4.2 Computer Exercises

Computer Exercise 4.1
% ced 1.m: Generate an exponentially distributed random variable
% with parameter a from a uniform random variable in [0, 1)
%
clf
a = input(‘Enter the parameter of the exponential pdf: f(x) = a*exp(-a*x)*u(x): ’);
N = input(‘Enter number of exponential random variables to be generated: ’);

U = rand(1,N);

V = -(1/a)*log(V);

M, X] = hist(V);

disp(* ’)

disp(‘No. of random variables generated’)
disp(N)

disp(* ”)

disp(‘Bin centers’)

disp(X)

disp(* )

disp(‘No. of random variable counts in each bin’)
disp(M)

disp(* *)

norm_hist = M/(N*(X(2)-X(1)));

plot(X, norm_ hist, ’0’)

hold

plot(X, a*exp(-a*X), ‘), xlabel(‘x’), ylabel(‘f X(x)),...
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title([‘Theoretical pdf and histogram for ’,num2str(N),
‘ computer generated exponential random variables’])
legend([‘Histogram points’],[‘Exponential pdf; a = ’, num2str(a)])

A typical run follows:

>>ced 1

Enter the parameter of the exponential pdf: f(x) = a*exp(-a*x)*u(x): 2
Enter number of exponential random variables to be generated: 5000
No. of random variables generated

5000

Bin centers

Columns 1 through 7

0.1876 0.5626 0.9375 1.3125 1.6875 2.0625 2.4375

Columns 8 through 10

2.8125 3.1875 3.5624

No. of random variable counts in each bin

Columns 1 through 6

2677 1212 590 263 129 71

Columns 7 through 10

349114

Current plot held

Computer Exercise 4.2
% ced 2.m: Generate pairs of Gauss. random variables from Rayleigh & uniform RVs
%
clf
m = input(‘Enter the mean of the Gaussian random variables: ’);
sigma = input(‘Enter the standard deviation of the Gaussian random variables: ’);
N = input(‘Enter number of Gaussian random variable pairs to be generated: ’);
U = rand(1,N);
V = rand(1,N);
R = sqrt(-2*log(V));
X = sigma*R.*cos(2*pi*U)+m;
Y = sigma*R.*sin(2*pi*U)+m;
disp(* ”)
disp(‘Covarance matrix of X and Y vectors:’)
disp(cov(X,Y))
disp(* ’)
[MX, X bin| = hist(X, 20);
norm_MX = MX/(N*(X_bin(2)-X_bin(1)));
MY, Y bin| = hist(Y, 20);
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Thearetical pdf and histograrm for 5000 computer generated exponential random variables
15 T T T T

s} < Histogram points
| —  Exponential pdf, a=2

()
—

05F \ 4

Figure 4.2:

norm MY = MY/(N*(Y_bin(2)-Y _bin(1)));

gauss_ pdf X = exp(-(X_bin - m).”2/(2*sigma"2))/sqrt(2*pi*sigma"2);
gauss_ pdf Y = exp(-(Y_bin - m).”2/(2*sigma"2))/sqrt(2*pi*sigma"2);
subplot(2,1,1), plot(X bin, norm MX, ’0’)

hold

subplot(2,1,1), plot(X bin, gauss_pdf X, ‘-7), xlabel(‘x’), ylabel(‘f X(x)’),...
title([‘Theoretical pdfs and histograms for ’,num2str(IN),

‘ computer generated independent Gaussian RV pairs’])

legend(['Histogram points’],['Gauss pdf; \sigma, \mu = ’, num2str(sigma),‘, ’, num2str(m)])
subplot(2,1,2), plot(Y _bin, norm MY, ’0’)

hold

subplot(2,1,2), plot(Y _bin, gauss pdf Y, ), xlabel(‘y’), ylabel(‘f_Y(y)’)

A typical run follows:

>>ced 2

Enter the mean of the Gaussian random variables: 1

Enter the standard deviation of the Gaussian random variables: 3
Enter number of Gaussian random variable pairs to be generated: 2000
Covarance matrix of X and Y vectors:

8.5184 0.0828
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Theoretical pdfs and histograms for S000 computer generated independent Gaussian BY pairs
0.1

/ = < Histogram points
0081 —  Gauss pdf, o, u=4,-2 []

_oost 2 —
e
+0.04 - \9 4

h—} _
0.04 & \b
002 Q/@/ -
o |.&——Q | | | |\®\®‘-o|_r\
20 -15 -10 5 0 5 10 15
¥
Figure 4.3:

0.0828 8.9416
Current plot held
Current plot held

Computer Exercise 4.3
% ce4 3.m: Generate a sequence of Gaussian random variables with specified correlation
% between adjacent RVs
%
clf
m = input(‘Enter the mean of the Gaussian random variables: ’);
sigma = input(‘Enter the standard deviation of the Gaussian random variables: ’);
rho = input(‘Enter correlation coefficient between adjacent Gauss. RVs: ’);
N = input(‘Enter number of Gaussian random variables to be generated: ’);
varl2 = sigma”~2*(1 - rho"2);

X =]
X(1) = sigma*randn(1)+m;
for k = 2:N

ml2 = m + rho*(X(k-1) - m);
X(k) = sqrt(varl2)*randn(1) + m12;
end
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[MX, X _bin| = hist(X, 20);
norm_MX = MX/(N*(X_bin(2)-X_bin(1)));
gauss pdf X = exp(-(X_bin - m).”2/(2*sigma"2))/sqrt(2*pi*sigma"2);
subplot(2,1,1), plot(X _bin, norm_MX, ‘0’)
hold
subplot(2,1,1), plot(X _bin, gauss pdf X, ‘), xlabel(‘x’), ylabel(‘f X(x)’),...
title([‘Theoretical pdf and histogram for ' num2str(N),
‘ computer generated Gaussian RVs’])
legend([‘Histogram points’],[‘Gauss pdf; \sigma,
\mu = ’, num2str(sigma),‘, ’, num2str(m)],2)
Z = X(1:50);
subplot(2,1,2), plot(Z, x’), xlabel(‘k’), ylabel(‘X(k)’)
title([‘Gaussian sample values with correlation ’; num2str(rho), ¢ between samples’])

A typical run follows:

>>ced 3

Enter the mean of the Gaussian random variables: 0

Enter the standard deviation of the Gaussian random variables: 2

Enter correlation coefficient between adjacent Gaussian random variables: .7
Enter number of Gaussian random variables to be generated: 2000

Current plot held

Computer Exercise 4.4

% ced _4.m: Testing the validity of the Central Limit Theorem with sums of uniform
% random numbers

%

clf

N = input(‘Enter number of Gaussian random variables to be generated: ’);

M = input(‘Enter number of uniform RVs to be summed to generate one GRV: ’);
% Mean of uniform = 0; variance = 1/12

Y = rand(M,N)-0.5;

X gauss = sum(Y)/(sqrt(M/12));

disp(* ”)

disp(‘Estimated variance of the Gaussian RVs:”)

disp(cov(X _gauss))

disp(* ’)

[MX, X bin| = hist(X gauss, 20);

norm_MX = MX/(N*(X_bin(2)-X_bin(1)));

gauss pdf X = exp(-X_bin."2/2)/sqrt(2*pi);

plot(X bin, norm MX, ‘0o’)

hold
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Theoretical pdf and histogram for 2000 computer generated Gaussian Rv's
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Figure 4.4:

plot(X _bin, gauss pdf X, ‘'), xlabel(‘x’), ylabel(‘f X(x)’),...
title([‘Theoretical pdf & histogram for ' num2str(N),

‘ Gaussian RVs each generated as the sum of ’, num2str(M), ¢ uniform RVs’])
legend([‘Histogram points’], [‘Gauss pdf; \sigma = 1, \mu = 0’],2)

A typical run follows:

>>ced 4

Enter number of Gaussian random variables to be generated: 10000

Enter number of uniform random variables to be summed to generate one GRV: 30
Estimated variance of the Gaussian RVs:

1.0075

Current plot held
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< Histogram points
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Figure 4.5:



Chapter 5

Random Signals and Noise

5.1 Problem Solutions

Problem 5.1

The various sample functions are as follows. Sample functions for case (a) are horizontal
lines at levels A, 0, —A, each case of which occurs equally often (with probability 1/3).
Sample functions for case (b) are horizontal lines at levels 5A, 34, A, —A, —3A, —5A,
each case of which occurs equally often (with probability 1/6). Sample functions for case
(c) are horizontal lines at levels 44, 24, —2A, —4A, or oblique straight lines of slope A or
—A, each case of which occurs equally often (with probability 1/6).

Problem 5.2

a. For case (a) of problem 5.1, since the sample functions are constant with time and
are less than or equal 2A, the probability is one. For case (b) of problem 5.1, since
the sample functions are constant with time and 4 out of 6 are less than or equal to
2A, the probability is 2/3. For case (c) of problem 5.1, the probability is again 2/3
because 4 out of 6 of the sample functions will be less than 2A at ¢t = 4.

b. The probabilities are now 2/3, 1/2, and 1/2, respectively.

c. The probabilities are 1, 2/3, and 5/6, respectively.

Problem 5.3

a. The sketches would consist of squarewaves of random delay with respect to ¢t = 0.

1
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b. X (t) takes on only two values A and —A, and these are equally likely. Thus

fX(m):%é(x—A)—lr%é(m—er)

Problem 5.4

a. The sample functions at the integrator output are of the form

t
Y@ () = / Acos (wo) d\ = 4 sin wot
wo

where A is Gaussian.
b. Y (ty) is Gaussian with mean zero and standard deviation

_ |sin (th0)|
0y = 0gq
wo

c. Not stationary and not ergodic.

Problem 5.5

a. By inspection of the sample functions, the mean is zero. Considering the time average
correlation function, defined as

.1 T 1
R()‘)Tlgrioﬁ/ﬂ(t)x(t+)‘)dt?0 Tox(t)x(t+/\)dt

where the last expression follows because of the periodicity of x (t), it follows from a
sketch of the integrand that

R(1) = A%(1 —4)\/Ty), 0< A< Ty/2
Since R (7) is even and periodic, this defines the autocorrelation function for all A.

b. Yes, it is wide sense stationary. The random delay, A, being over a full period, means
that no untypical sample functions occur.
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Problem 5.6

a. The time average mean is zero. The statistical average mean is

n/
E[X (t)] = / 2Acos(2ﬂf0t+9)ﬂ—ﬁsin@ﬂfot—i—&)

/2

/4 /4w

_ % [sin (27 fot + 7/2) — sin (27 fot + 7/4)]

_ % {(1 - %) cos (2 fot) — % sin (27 fgt)]

w/4

The time average variance is A%2/2. The statistical average second moment is

E[X?(t)]

w/2 do

= A% cos? (2 fot + 0) —
/7r/4 (2rfo )77/4
2A2

™

242 1
= Z + 5 sin (47 fot + 20)

/2 w/2
/ do + / cos (4 fot + 20) dO
w/4 w/4

2 2
= A? + A7 [sin (47 fot + ) — sin (47Tf0t + %)]
A2 A2
= 5 - [sin (47 fot) + cos (47 fot)]

w/2
71'/4]

The statistical average variance is this expression minus E? [X (¢)].

b. The time average autocorrelation function is

2
(xt)x(t+71)) = A? cos (27 fo7)

The statistical average autocorrelation function is

R(r) =

/2
/ A? cos (2 fot + 0) cos (2mfo (t+7) + 6) .
w/4 7T/4
242 /2
™ Jrx/4
2 A2
- cos (27 foT) + — sin (27 fo (2t + 1) + 20)

[cos (27 foT) 4 cos (27 fo (2t 4+ 7) + 26)] dO

/2

/4
2 2
A? cos (2 foT) + A sin (27 fo (2t + 7) + m) — sin (27rf0 (2t +71)+ g)}
T

A2 A2
— cos (27 foT) — — [sin 27 fo (2t + T) + cos 27 fo (2t + 7)]
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c. No. The random phase, not being uniform over (0,27), means that for a given time,
t, certain phases will be favored over others.

Problem 5.7

a. The mean is zero. The mean-square value is
E[7?] = E {[X (t) cos (wot)]Z}
= E[X?(t)] cos® (wot) = 0% cos® (wot)
The process is not stationary since its second moment depends on time.

b. Again, the mean is clearly zero. The second moment is

E[Z7]

E {[X (t) cos (wot + 9)]2}
= E[X?@)] E [cos® (wot +0)] = %

Problem 5.8
The pdf of the noise voltage is

e—(@=2)%/10

107

Problem 5.9

a. Suitable;

b. Suitable;

c. Not suitable because the Fourier transform is not everywhere nonnegative;
d. Not suitable for the same reason as (c);

e. Not suitable because it is not even.
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Problem 5.10
Use the Fourier transform pair

2Wsine (W) « IL(f/2W)
with W = 2 x 108 Hz to get the autocorrelation function as

Rx (1) = NoWsinc(2Wr) = (2 x 107%) (2 x 10°) sinc (4 x 10°7)
= 0.02 sinc (4 x 10°7)

Problem 5.11

a. The r (1) function, (5.55),
r(r) = —/ p(t+7)dt

T/2—71
= —/ cos (mt/T') cos [M} dt, 0<7<T/2
T/2 r

T
= —(1-— — <7<
%1 ﬁTnm(T),o_T_Tm
Now r (1) = r(—7) and r (7) = 0 for |7| > T//2. Therefore it can be written as
1 T
r(r) = EA (1/T) cos <?>
Hence, by (5.54)
A? T
Ry (1) = —A (1/T) cos ( T >

The power spectral density is

Sa(f)=¥{51n02 [T(f—%ﬂ“mc [ <f+%>]}

b. The autocorrelation function now becomes
Ry(r)=A*2r (1) +r (1 +T) +7(r—T)]
which is (5.62) with gg = g1 = 1. The corresponding power spectrum is
S (f) = AT [sinc® (T'f — 0.5) +sinc® (T'f + 0.5)] cos® (n fT)
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c. The plots are left for the student.

Problem 5.12
The cross-correlation function is

Rxy () = EX{t)Y(t+71)=R,(1)+E {A2 cos (wot + O) x sin [wo (t +7) + @]}
= BA(r/70) + A? sin (woT)

Problem 5.13
a. By definition

Rz (1) =
)Y ()Y (t+7)]
NEY ()Y (t+7)]

Il
NEN
= =N

b. Since a product in the time domain is convolution in the frequency domain, it follows
that

Sz (f) = Sx (f) * Sy (f)

c. Use the transform pairs

OWsine (2Wr) —— T (f/2W)
and
cos (2nfor) > 56 (f = fo) + 36 (f + fo)
Also,
Ry () = E {4cos (50mt + 0) cos [50 (t + 1) + 0]} = 2 cos (5077)

Using the first transform pair, we have

Ry (1) = 500 sinc (1007)
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This gives

Rz (t) = [500sinc (1007)][2 cos (507T)]
= 1000 sinc (1007) cos (507T)

and

Sz (f) =5 x 103 [H <f2_0025> +]1 <f24(r)(?5>}

Problem 5.14
a. E[X?()] =R(0)=5W; E?[X (¢)] =lim,~o R(7) =4 W;
ocx=FE[X*t)] -F*[X(1)]=5—-4=1W.
b. dc power = E?[X (t)] =4 W.
c. Total power = E [X? ()] =5 W.

d. S(f) =46 (f) + 5sinc? (5f).

Problem 5.15

a. The autocorrelation function is

Rx(r) = EY (@)Y (t+7)]
= E{XO+X(t-DXt+n)+X{t+17-1)]}
= E[X()X(t—i—T)]—l—E[X(t)X(t—i—T—l-T)]
EXt-T)X({t+n]+EXt-T)X(t+7-T)]
= 2Rx(T)+Rx(T— T)+ Rx(t+1T)

b. Application of the time delay theorem of Fourier transforms gives

Sy (f) = 25x (f) +5x (f) lexp (=527 fT) + exp (j27 fT)]
= 2Sx (f)+2Sx (f)cos (27 fT)
= 4Sx (f) cos® (nfT)
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¢. Use the transform pair

Rx () = 6A (1) «—— Sx (f) = 6sinc? (f)
and the result of (b) to get

Sy (f) = 24sinc? (f) cos® (zf/4)

Problem 5.16
a. The student should carry out the sketch.
b. dc power = OOjS(f) df =5 W.

c. Total power = [* S (f)df =5+10/5=7W

Problem 5.17
a. This is left for the student.

b. The dc power is either lim,_,o, Rx () or f00_+ Sx (f)df. Thus (1) has 0 W dc power,
(2) has dc power K1 W, and (3) has dc power Ko W.

c. Total power is given by Rx (0) or the integral of [*_Sx (f)df over all frequency.
Thus (1) has total power K, (2) has total power 2K; + K2, and (3) has total power

P3—K/ eaf2df+K1+K1+K2—\/§K+2K1+K2

where the integral is evaluated by means of a table of definite integrals.

d. (2) has a periodic component of frequency b Hz, and (3) has a periodic component of
10 Hz, which is manifested by the two delta functions at f = +10 Hz present in the
power spectrum.

Problem 5.18
a. The output power spectral density is
Sout (f) = 107°IL (/2 x 10°)

Note that the rectangular pulse function does not need to be squared because its
amplitude squared is unity.
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b. The autocorrelation function of the output is

Roui (1) = 2 x 10% x 10~ sinc (2 x 10%7) = 20 sinc (2 x 10%7)

c. The output power is 20 W, which can be found from R, (0) or the integral of Sy (f).

Problem 5.19

a. By assuming a unit impulse at the input, the impulse response is

h(t) == [ut) —u(—=T)

1
T

b. Use the time delay theorem of Fourier transforms and the Fourier transform of a
rectangular pulse to get

H (f) = sinc (fT) e 9™ T
c. The output power spectral density is

o (f) = Sy2sine? (77)

d. Use F[A(7/70)] = Tosinc? (1o f) to get
Ro(7) = 2A (7/T)

e. By definition of the equivalent noise bandwidth

E[Y?] = HZ.«BNNo
The output power is also Ry (0) = No/2T. Equating the two results and noting that
Hpax = 1, gives By = 1/2T Hz.

f. Evaluate the integral of the power spectral density over all frequency:

E[YﬂZZ/C:%§$n¥(fTﬁ#::A@

" sine® (u) du = 2% = Ry (0)
5T sinc” (u) du 0

o 2T
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Problem 5.20

a. The output power spectral density is
No/2

R NI

b. The autocorrelation function of the output, by inverse Fourier transforming the output
power spectral density, is

I [ Ngj2
me = P W= [

B > cos (27 fT) cos (2w f3Tx)
= o f A ofs || T

= @eﬂfﬂfﬂ cos (\/§7Tf37' — ’7T/4>

efj27rf7'df

c. Yes. Ro (0) == % = N()BN, BN == 7Tf3/2

Problem 5.21

We have
2 (2n f)?
H ()= 2rf)* + 5,000
Thus
H (f)] = ——22

V@r )t 45,000
This could be realized with a second-order Butterworth filter in cascade with a differentiator.
Problem 5.22

a. The power spectral density is
No
Sy (f) = 2T (£/2B)
The autocorrelation function is

Ry (1) = NoBsinc (2BT)
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b. The transfer function is

A

=

The power spectral density and autocorrelation function are, respectively,

9 A? B
SY(f) = |H(f)| SX(f):a2+(27rf)2l+(27rﬂf)2
B A2 /a? B _ A?B/a? [ 1 B o232
1+ @nf/a)? 1+ @8 1-a28 1+ 2nf/a)? 1+ (218f)

270 to find that the corresponding

Use the transform pair exp (—|7|/79) «— TTonfro)

autocorrelation function is
A’B/a

Ry (t) = W

[efaw —af e*ITI/ﬂ} . a#1/8

Problem 5.23

a. E[Y (t)] = 0 because the mean of the input is zero.

b. The output power spectrum is
1 1
(10m)* 1+ (f/5)

which is obtained by Fourier transforming the impulse response to get the transfer
function and applying (5.90).

Sy (f) =

c. Use the transform pair exp (—|7|/79) «— T’;;JQT—)Q to find the power spectrum as
0

1 |7
RY(T):lo_We 10mir]

d. Since the input is Gaussian, so is the output. Also, E [Y] =0 and var[Y] = Ry (0) =
1/(107), so

ey’ /20%

1/ 2770%/

fy (y) =
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2 _ 1
where oy, = Tor-

e. Use (4.188) with
r=pn =Y ), y=y2=Y (t2), my =my =0, and ai:azzl/mw
Also

p(,]_) _ Ry (T) _ 67107r\7'|

Ry (0)
Set 7 = 0.03 to get p(0.03) = 0.3897. Put these values into (4.188).

Problem 5.24
Use the integrals

I — /OO b()dS . jﬂ'bo
1= oo (a0s + a1) (—ags + a1)  agay
and
I /OO (b052 + bl) ds . —by+ aobl/ag
e = |7
2 —oo (a0s% + a15 + a2) (aps?® — a1s + as) apay

to get the following results for By .

|| Filter Type | First Order | Second Order ”

Chebyshev 12& mle/e
¢ \/1—&-1/52\/\/1—&-1/52—1
Butterworth 5 fe s fe

Problem 5.25
The transfer function is

aON

(s + we/V2 + jwe/V2) (s 4+ we/V2 — jwe/V2)
A A*

T (st we/VEA jwe/V2) " (s + we/V2 — jwe/V?2)

H(s) =

where A = jw,./ 21/2 This is inverse Fourier transformed, with s = jw, to yield

h(t) = VBwee V2 gin <“72t> w(t)
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for the impulse response. Now
1 [ 2 We T fe
- h(t)|"dt = =
5[ nora=s =

after some effort. Also note that [*°_h(t)dt = H (0) = 1. Therefore, the noise equivalent
bandwidth, from (5.109), is

By = T fe Hy — 1007

— 7 = Hz
2V2 V2

Problem 5.26
(a) Note that Hypax = 2, H(f) =2 for =1 < f <1, H(f) =1 for =3 < f < —1 and
1 < f <3 and is 0 otherwise. Thus

B 1 [e'e) 9 _1 1 2
By = /0 H ()] df—1< /0 2ar + | 12df>

1
= ;(+1)=125He

(b) For this case Hpax = 2 and the frequency response function is a triangle so that

1
4

1 o0
By = g [ WP -

max

100
/0 2(1— £/100) df

1
= 33.33 Hz

Problem 5.27
By definition

1 2, 1 60 f—500\1" ..
BNF&/O H () deAOO [2A< — )] df = 66.67 Hz

Problem 5.28

a. Use the impulse response method. First, use partial fraction expansion to get the
impulse response:

10 1 1 0, ,
Ha(f) =15 <j27rf+1 _j27rf+20> S ha(t) =3 (" =) u()




14 CHAPTER 5. RANDOM SIGNALS AND NOISE

Thus

5 L ®rdt ()" fo (et — et
v - _

2 [ff‘;o h(t) dt] L2 [(38) J (et = e di]
lfooo (6—2t — 921t | 6—40t) dt

2 (et e T

2

_ l(_%eqt + 2_216721t _ 4_10674015)80

2 (1—1/20)°
_ LN\ 1 2 1Y 1/20)F/ 36l
2\19 2 21 40) 2\19 21 x 40
= 0.238 Hz

b. Again use the impulse response method to get By = 0.625 Hz.

Problem 5.29

(a) Choosing fo = f1 moves —f1 right to f = 0 and f left to f = 0. (b) Choosing fo = f2
moves — fa right to f = 0 and f left to f = 0. Thus, the baseband spectrum can be
written as Spp (f) = 1 NoA (f?—%) . (c) For this case both triangles (left and right) are

centered around the origin and they add to give Sip (f) = %NOH (f?—%) (d) They are

not uncorrelated for any case for an arbitrary delay. However, all cases give quadrature
components that are uncorrelated at the same instant.

Problem 5.30

a. By inverse Fourier transformation, the autocorrelation function is

Ry (7) = gl

where K = a/2.

b. Use the result from part (a) and the modulation theorem to get

R, (1) = %e*ahl cos (27 foT)

c. The result is
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and

Sncns (f) =0

Problem 5.31
(a) The equivalent lowpass power spectral density is given by Sy, (f) = Sn, (f) = Noll ( % S f1> .

The cross-spectral density is Sy, (f) = 0. (b) For this case Sy, (f) = Sn, (f) = %H (2(%_]01))
and the cross-spectral density is

B (- )< F20
Sncns(f)_{ %, 0<f<(fo—fi)

(c) For this case, the lowpass equivalent power spectral densities are the same as for part
(b) and the cross-spectral density is the negative of that found in (b). (d) for part (a)

Rncns (T) = 0
For part (b)
0 Nn . fi=f2 N
RnCnS(T) — / __06327rf7'df +/ _06]27rf7'df
—(f2—f1) 2 0 2
Ny [—e—jQWfT 0 e I2mIT (fQ_fl)]
= Jg |7 T
2 ! ~(f-tfr) 0
_ M (_1 + 2= ST 4 o _32m(fa=f1)7 —1)
4rr
No

= I {2—=2cos[27 (fa — f1) 7]}

_ No . 2
= —Z2si?[r (fo— fi)7)
= — [Nom (f2 = f1)? 7| sine?[(f2 — f1) 7]
For part (c), the cross-correlation function is the negative of the above.

Problem 5.32
The result is

1

= §Sn(f_f0)+%‘g” (f+f0)

Sna (f)
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so take the given spectrum, translate it to the right by fo and to the left by fy, add the two
translated spectra, and divide the result by 2.

Problem 5.33
Define Ny = A+ N,.. Then

R=/N}+ N2

Note that the joint pdf of N7 and N; is

1 1 9 9
vy, (n1, ng) = 503 EXP {—202 [(nl — A+ ns} }

Thus, the cdf of R is

F =P < — s s
R (1) r(R<r) //\/MQ fayN, (1, ng) dnidn

Change variables in the integrand from rectangular to polar with
n1 = acos B and no = asin 3

Then

r 2w .
_ / " Qe <%> da
o O g

Differentiating with respect to r, we obtain the pdf of R:

fr(r)= %e_ﬁ(rzﬁp)fo (%) , 720

o o -

Problem 5.34
The suggested approach is to apply

E {[S [war ()]
Sn(f) = fim. { 2;T }

where zor () is a truncated version of x (t). Thus, let

N

XorT (t) = Z nké (t — kTS)

k=—N
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The Fourier transform of this truncated waveform is
N
Slear (1) = Y npe 92T
k=—N

Thus,

E{|S[ear W)} = E{

k=—NI=—N
N
= > Rn(0)= (2N +1) R, (0)
k=—N
But 27T = 2NT, so that
S y E{l%[xw (t)]\Q} i N+ 1) R (0)
n(f) = Jim 2T N INT,
_ Ry(0)
=

Problem 5.35
To make the process stationary, assume that each sample function is displaced from the
origin by a random delay uniform in (0,77]. Consider a 2nT" chunk of the waveform and
obtain its Fourier transform as
n—1
S [ Xonr ()] = Z At sinc (fTO)e—j27rf(Atk+To/2+kT)

k=—n

Take the magnitude squared and then the expectation to reduce it to

n—1 n-—1
E [|X2nT (f)lz} = A’rdsine® (fro) Y. Y. E{e*jQWf[Atkathr(k—m)T]}

k=—nm=—n
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We need the expectation of the inside exponentials which can be separated into the product
of the expectations for k % m, which is

4 (T/4 .
E{} — T/(; e_JQWfAtdetk — e_JQWf(k_m)T SinCQ (fT/4)

For k = m, the expectation inside the double sum is 1. After considerable manipulation,
the psd becomes

A27_2
Sx (f) = TO sinc? (f7o) [1 — sinc (fT/4)]
2A%72sinc? (1of) o . sin? (nwfT)
T cos” (mfT) nlglolo nsin? (7 fT)

Examine

\in2
L= fim S0 01/T)
n—oo nsin” (7 f1)

It is zero for f # m/T, m an integer, because the numerator is finite and the denominator
goes to infinity. For f = mT, the limit can be shown to have the properties of a delta
function as n — oco. Thus

A7 sinc? (frg) |1 — sinc (fT/4) + 2 Z 6(f—m/T)

m=—00

Sx (f) =

Problem 5.36

The result is

1 t+T  pt+T
BP0 =7z [ [ B0+ R O= )+ Rx (=B =)+ Rx (A= A+ 7)] dhds



5.1. PROBLEM SOLUTIONS 19
Problem 5.37

1. (a) In the expectation for the cross correlation function, write the derivative as a limit:

Ry aor (1) = E {y (0 M}

dt
(t+T+6 t+7']}
"0

- E{y(t) lin
[

- li_rz%é{Ey(t)y(t—i-T—Fe)] Ely(t)yt+7)}
— limRy(T+€)_Ry(T)

e—0 €
dRy (1)
dr

(b) The variance of Y = y (¢) is 03 = NoB. The variance for Z = %;i is found from its
power spectral density. Using the fact that the transfer function of a differentiator is j27 f
we get

S7(f) = (xf)? SPT(f/2)

so that
B 3B
0% = 21%Ny f2df = 2n°No—
4
= LmNoB?
3
The two processes are uncorrelated because R, o (0) = dRC;’T(T) = 0 because the derivative

of the autocorrelation function of y (t) exists at 7 = 0 and therefore must be 0. Thus, the
random process and its derivative are independent. Hence, their joint pdf is

exp (—a2/2NgB) exp (—ﬁ2/2.677T2N0B3)
V21 NoB V2.67m3 Ny B3

(c) No, because the derivative of the autocorrelation function at 7 = 0 of such noise does
not exist (it is a double-sided exponential).

frz (o, B) =
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5.2 Computer Exercises

Computer Exercise 5.1

% ce5 1.m: Computes approximations to mean and mean-square ensemble and time
% averages of cosine waves with phase uniformly distributed between 0 and 2*pi
%
clf
f0 =1;
A=1,
theta = 2*pi*rand(1,100);
t = 0:.1:1;
X =}
for n = 1:100
X = [X; A*cos(2*pi*f0*t+theta(n))];
end
EX = mean(X);
AVEX = mean(X’);
EX2 = mean(X.*X);
AVEX2 = mean((X.*X)");
disp(* ")
dlsp( Sample means (across 100 sample functions)’)

(
disp(* ")
disp(‘Typical time-average means (sample functions 1, 20, 40, 60, 80, & 100)’)
disp([AVEX(1) AVEX(20) AVEX(40) AVEX(60) AVEX(80) AVEX (100)])
disp(* ’)
disp(‘Sample mean squares’)
disp(EX2)
disp(* ’)
disp(‘Typical time-average mean squares’)
disp([AVEX2(1) AVEX2(20) AVEX2(40) AVEX2(60) AVEX2(80) AVEX2(100)])
disp(* )
forn =1:5

Y = X(n,);

subplot(5,1,n),plot(t,Y),ylabel (‘X(t,\theta)’)

ifn ==

title(‘Plot of first five sample functions’)
end
if n ==
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xlabel(‘t’)
end
end

A typical run follows:

>>ced_1

Sample means (across 100 sample functions)
Columns 1 through 7

0.0909 0.0292 -0.0437 -0.0998 -0.1179 -0.0909 -0.0292
Columns 8 through 11

0.0437 0.0998 0.1179 0.0909

Typical time-average means (sample functions 1, 20, 40, 60, 80, & 100)
-0.0875 -0.0815 -0.0733 -0.0872 0.0881 0.0273
Sample mean squares

Columns 1 through 7

0.4960 0.5499 0.5348 0.4717 0.4477 0.4960 0.5499
Columns 8 through 11

0.5348 0.4717 0.4477 0.4960

Typical time-average mean squares

0.5387 0.5277 0.5136 0.5381 0.5399 0.4628

Computer Exercise 5.2
This is a matter of changing the statement
theta = 2*pi*rand(1,100);
in the program of Computer Exercise 5.1 to
theta = (pi/2)*(rand(1,100) - 0.5);
The time-average means will be the same as in Computer Exercise 5.1, but the ensemble-
average means will vary depending on the time at which they are computed.
Computer Exercise 5.3

This was done in Computer exercise 4.2 by printing the covariance matrix. The diago-
nal terms give the variances of the X and Y vectors and the off-diagonal terms give the
correlation coefficients. Ideally, they should be zero.
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Plot of first five sample functions
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Figure 5.1:

Computer Exercise 5.4

% ce5  4.m: plot of Ricean pdf for several values of K
%

clf

A = char(*-,) =00 =0 L),

sigma = input(‘Enter desired value of sigma ’);

r = 0:.1:15*sigma;

n=1;

KdB = [|;

for KK = -10:5:15;
KdB(n) = KK;

K = 10." (KK/10);
fR = (r/sigma”2).*exp(-(r.”2/(2*sigma"2)+K)).*besseli(0, sqrt(2*K)*(r/sigma));
plot(r, fR, A(n,:))
ifn==1
hold on
xlabel(’r’), ylabel(’f R(r)’)
grid on
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Ricean pdf for o =1
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Figure 5.2:

end

n = n+1;
end
legend([‘'K =7, num2str(KdB(1))," dB’],['K = ’, num2str(KdB(2)),* dB’],
‘K =", num2str(KdB(3))," dB’],

‘K =", num2str(KdB(4))," dB’],[K =, num2str(KdB(5)),* dB’],
K =7, num2str(KdB(6))," dB’)
title([‘Ricean pdf for \sigma = ’, num2str(sigma)])

A plot for several values of K is shown below:



Chapter 6

Noise in Modulation Systems

6.1 Problems

Problem 6.1

The signal power at the output of the lowpasss ..Iter is Pr. The noise power is NyBy,
where By is the noise-equivalent bandwidth of the ..Iter. From (5.116), we know that the
noise-equivalent bandwidth of an n'" order Butterworth ..Iter with 3 dB bandwidth W is

By (n) = ‘7rW/2n
sin (7/2n)
Thus, the signal-to-noise ratio at the ..Iter output is
Pp  sin(m/2n) Pp
N()BN o 7T/2’rL NOW

SNR =

so that f(n) is given by
_sin (7/2n)

We can see from the form of f(n) that since sin (x) ~ 1 for x < 1, f(oc0) = 1. Thus for
large n, the SNR at the ..Iter output is close to Pr/NyW. The plot is shown In Figure 6.1.

Problem 6.2
We express n (t) as

1 1
n (t) = ne (t) cos |wet £ 5 2rW)t + 9] +ns (t) sin {wct j:é (2rW)t+0
where we use the plus sign for the USB and the minus sign for the LSB. The received
signal is

x, (t) = A [m(t) cos (wet + 0) Fm (1) sin (w.t + 0)]

1
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Figure 6.1:

Multiplying z, (t) +n (t) by 2 cos (wct + 0) and lowpass ..Itering yields
yp (t) = Acm (t) + n. (t) cos (TWt) £ ng (t) sin (W)

From this expression, we can show that the postdetection signal and noise powers are given
by

Sp = AYm2  Np=NW

Sr = Acm? Np = NoW

This gives a detection gain of one. The power spectral densities of n. (t) and ns (t) are
illustrated in Figure 6.2.

Problem 6.3
The received signal and noise are given by

x, (t) = Acm () cos (wat +0)+ n(t)
At the output of the predetection ..Iter, the signal and noise powers are given by
1 - JE—
Sy = 5A§m2 Np =n2= NyBr

The predetection SNR is

AZp2
e 5N
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S. (f). 8.(f)
\IO
f
- 1W =W
2 2
Figure 6.2:
S.(f)
\IO
f
1 0 1
- EBT EBr
Figure 6.3:

If the postdetection ..Iter passes all of the n. () component, yp (t) is
yp (t) = Aem (t) + ne (¢)
The output signal power is Agﬁ and the output noise PSD is shown in Figure 6.3.

Casel:  Bp>3iBr
For this case, all of the noise, n. (t), is passed by the postdetection ..Iter, and the output

noise power is
1By
Np = / Nodf = 2Ny Br

_J2- Bp
This yields the detection gain

(SNR)p, _ _A*m?/NoBr
(SNR)p  A2m2/2NyBr
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Case Il:  Bp <3Br
For this case, the postdetection ..Iter limits the output noise and the output noise power
is B
Np = Nodf = 2NoBp
—Bp

This case gives the detection gain

(SNR), A2m2?/2NoBp _ Br
(SNR>T B A%WQNOBT B BD

Problem 6.4
This problem is identical to Problem 6.3 except that the predetection signal power is

1 __
St = EAg [1 + azm%}

and the postdetection signal power is
Sp = A? aQW%
The noise powers do not change.
Casel:  Bp>iBr

(SNR)p,  A2®m2/NoBr  2d°m2
(SNR)p g2 [1—|—a2m_%] /2NoBp 1+ a*m?

Casell:  Bp <3DBr

(SNR) A2Pm2)2NyBp _d®m2 By

(SNR)p g2 {1 +a2m—%} /2N,By 1+a*m2  Bp

Problem 6.5
Since the message signal is sinusoidal

m,, (t) = cos (8t)
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Thus,

m2 = 0.5

The ecciency is therefore given by

(0.5) (0.8)2

O O8T o404 — 24.24%
1+ (0.5) (0.8)? ’

Eyy
From (6.29), the detection gain is

%ﬂ — 9By = 0.4848 = —3.14dB
T

and the output SNR is, from (6.33),

Pr
NoW

(SNT),, = 0.2424

Relative to baseband, the output SNR is

ONB)p _ 9494 — 615dB

Pr/NoW

If the modulation index in increased to 0.9, the e@ciency becomes

0.5) (0.9)
Erp= % = 0.2883 = 28.83%
14 (0.5)(0.9)
This gives a detection gain of

(SNR), _

2E;; = 0.5765 = —2.39dB
G = 2B = 05765 39

The output SNR is

Pr
(SNR)p =0.2883 NoW
which, relative to baseband, is
—Q(SNR) =0.2 = —5.40dB
Pr/NoW 0.2883 5.40

This represents an improvement of 0.75 dB.

Problem 6.6
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The ..rst step is to determine the value of M. First we compute

© ] ) M
P{X > M} = /20" g — 0 (= ) = 0.005
(X > M) Afg%e y=q (2

This gives
M
— =2.57
ag
Thus,
M =2.57c
and 0
m
mn () =5 57
Thus, since m? = 52 L
—_ 2 2
T 0 579)2 T 6.60502
Since a = 3, we have
0.151 (3)?
By = — 3.64%

and the detection gain is

BNR)p _ oi_ 0708

(SNR)p

Problem 6.7
The output of the predetection ..Iter is

e(t) = Ac[1 +amy, (t)] cos [wet + 0] 4 1y, (t) cos [wet + 0 + ¢, (1)]

The noise function r, (t) has a Rayleigh pdf. Thus

iy () = e 2N

where N is the predetection noise power. This gives

1= 1=
N = Eng + Eng = NoBt

From the de...nition of threshold

Ae r 2
0.99:A ~¢ /2N gy
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which gives
0.99 =1 —e 4/
Thus,
A
oN = 1n(0.01)
which gives
A2 =921 N

The predetection signal power is

PT:EAC [1+a2%} zéAE[H—l]:AE

2
which gives
Pr A2
— = =921 = 9.64dB
N N 9 9.64d
Problem 6.8 .
Since m (t) is a sinusoid, m2 = 3, and the e€ciency is
la2 CL2
Epr — 2
T 141a2 " 2+ a2
and the output SNR is
a? Pr
NR)p = Eff =—
(S R)D ff 2_|_a2 NOW

In dB we have )

a PT
(SNR)DdB 10log;, (—2 n a2> + 101log, _NOW

For a =0.4,
(SNR) pgp = 10Tog1 —L— —11.3033
’ NOW
Fora = 0.5,
(SNR)p, 45 = 101og1g Pr o540
’ N(]W
Fora =0.7,
(SNR)p 45 = 10logyg N{D 7 — 70600
For a = 0.9,

Pr
(SNR)p 4 = 10logio - — 54022
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The plot of (SNR)4p as a function of Pr/NoW in dB is linear having a slope of one. The
modulation index only biases (SN R) p 4z down by an amount given by the last term in the
preceding four expressions.

Problem 6.9
Let the predetection ..Iter bandwidth be By and let the postdetection ..Iter bandwidth be
Bp. The received signal (with noise) at the predetection ..Iter output is represented

xp (t) = Ac[1 +amy, (t)] coswet + ne () coswet + ng () sinwet
which can be represented
xp (t) = {Ac[1 4 amy, (t)] + ne (1) } coswet — ng (t) sinwet
The output of the square-law device is
y(t) = {A[L+amy, ()] +n. ()} cos’wt

—{A:[14 amy, (t)] +ne (t) } ns (t) coswe (t)

+n2 (t) sin? cos we (t)

Assuming that the postdetection ..Iter removes the double frequency terms, yp, (¢) can be
written 1 )

yp (8) =5 {Ae 1+ ama ()] + ne ()} + 50 (1)
Except for a factor of 2, this is (6.50). We now let m,, (t) = cosw,,,t and expand. This gives

yp (t) = %Az [1+ acoswmt]® + Acne (t)

1 1
+Acan (t) cos wmt + §n3 (t)+ Eng (t)

We represent yp (t) by
yp(t) =21 () + 22 (t) + 23 (t) + 24 (t) + 25 (1)

where z; (t) is the i** term in the expression for yp (t). We now examine the power spectral
density of each term. The ..rst term is

21 (t) = %Az <1 + %a2> + A2a coswpt + 711143&2 cos 2w,,t

2 (t) = Acne (1)

z3(t) = Acan, (t) cos wpt
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and .
z5(t) = 52 (1)

A plot of the PSD of each of these terms is illiustrated in Figure 6.4. Adding these ..ve
terms together gives the PSD of yp (t).

Problem 6.10

Assume sinusoidal modulation since sinusoidal modulation was assumed in the development
of the square-law detector. For a = 1 and my, (t) = cos (27 fint) SO that m2 = 0.5, we have,
for linear envelope detection (since Pr/NoW > 1, we use the coherent result),

g Pro__dwi Pro 5 P 1P
TTNW ™~ 11 a2m2 NoW ~ 143 NoW — 3 NoW

(SNR)p,

For square-law detection we have, from (6.61) with a = 1

(SNR)p gp =2 <

Taking the ratio

This is approximately —1.8 dB.

Problem 6.11
For the circuit given
H(f)= e = ——
- R+j2nfL 14 <2_7réf_L)
and )
H (P =

2

The output noise power is

C[CNe__d [ 1 (R, N
N—/_oo 2 1+(27TL>2_NOA 1+ 2 <27TL)d:L‘_ i
R



10

CHAPTER 6. NOISE IN MODULATION SYSTEMS

S, (f)
1@, 1,6
1 A2vg Y
64 1 1
Z'Aéaz ZAéaz T TlAéa“
f
- 2f - f 0 f 2f_
S, (1)
%N,
t
1 1
25r 0 EBT
(1)

Figure 6.4:
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The output signal power is
1 A2R?
S=c—"T—=
2 R?+(2nf.L)

This gives the signal-to-noise ratio

S _ 2A°RL
NN R2+(27rch)2]

Problem 6.12

For the RC ..Iter
B 2A2RL

S
NN [1 + (21 fCRO)ﬂ

Problem 6.13
The transfer function of the RC highpass ..Iter is
R j2r fRC
H(f)= = -
R+ J—Qlﬁ, 14+ j2nfRC
so that
(j27 fRC)*

H(h) = 1+ (j2r fRO)?

Thus, The PSD at the output of the ideal lowpass ..Iter is

Ny __(2n fRC)? W
= 2 ™ C 2 |f‘ <
Sn(f) { FremrEe) Il >W

The noise power at the output of the ideal lowpass ..Iter is
w W (2rfRC)?
N[ Sapa=m 2/ RO)_
W o 1+ (2nfRCO)
with x = 27 f RC, the preceding expression becomes
N, 2rRCW ;.2

- 27RC 14 22

Since
22 1 1
1422 14 22

df

11
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we can write o ROW o ROW
T s
2rRC | J, 0 1+ 22
or
No ~1
N =55 @2rRCW —tan™" (2rRCW))
which is .
N = NW — No tan™! (27rRCW)

2rRC
The output signal power is

0 2 _ A _(2rf.RC)?
5_2A |H (fe)|” = 2 14 ©2rf.RC)?

Thus, the signal-to-noise ratio is

S A2 (2nf.RC)? 27RC

N 2N, 1 + (2 f.RC)? 2rRCW — tan~! (2r RCW)

Note that as W — oo, % — 0.

Problem 6.14
For the case in which the noise in the passband of the postdetection ..Iter is negligible we
have

=03, SSBand QDSB

and 5

€2D = Zaé, DSB
Note that for reasonable values of phase error variance, namely ai < 1, DSB is much less
sensitive to phase errors in the demodulation carrier than SSB or QDSB. Another way of
viewing this is to recognize that, for a given acceptable level of 2, the phase error variance
for can be much greater for DSB than for SSB or QDSB. The plots follow by simply plotting
the two preceding expressions.

Problem 6.15
From the series expansions for sin¢ and cos ¢ we can write

1 1
cosp = 1-— 5(;524—51(]54

sing = oo
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Squaring these, and discarding all terms ¢* for k > 4, yields
cos?dp = 1— ¢ +%¢4

g = ¢ - 2ot

Using (6.70) and recognizing that my (t), my (t), and ¢ (¢) are independent, yields

2 =02 —20% o8¢+ 02, co8 G+ 02, sin? b+ o2

Assuming ¢ (t) to be a zero-mean process and recalling that

ot = SUé
gives
cos¢p = 1 +_;0'35+ %Ué
cos2¢p = 1 —035+03;
sin? ¢ = oé — 03,
This yields

1 1
2 2 2 4 2 2, 4 2 2 _ 4 2
e2 =0y, —20;, <1 + 5% —I—g%,) +0om, (1 — 05 —|—O’¢) + 0o, (O’¢ —a¢) + o,

which can be expressed

= 3
2_2 2 4 2 2 2 4 2
ge = 4‘7m1‘7¢+0m20¢ Oma0 T 0

For QDSB we let 02, =02, =02,

. This gives

— 1
g:a%(@_1@>+ﬁ

For ai >> 035, we have
g2 = a,znaé + 02

which yields (6.73). For DSB, we let 02, =02, and o2, = 0. This gives (6.79)
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Problem 6.16
From (6.73) and (6.79), we have

0.05 = o}+2, SSB
0
m
3 2
0.05 = =(03)*+2%, DSB
4 oz,
Thus we have the following signal-to-noise ratios
2
O 1
-_m B
o2 0.05 — Ji’ SS
T _ L DSB
o2 ’

2
0.05 3 (o2)
The SSB characteristic has an asymptote de..ned by
2 _
oy =0.05
and the DSB result has an asymptote de..ned by
3

S (o3)" =0.05

or
s, = 0.258

The curves are shown in Figure 6.5. The appropriate operating regions are above and to
the left of the curves. It is clear that DSB has the larger operating region.

Problem 6.17
Since we have a DSB system
— _ 3 o
2 _ 9 4
g5 = 276 + 037;

Let the bandwidth of the predetection ..Iter be Br and let the bandwidth of the pilot ..Iter
b

i By

(0]

B, =
This gives
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Figure 6.5:
From (6.85) and (6.86), we have
p 11
% T k2 2p
so that
2_3 1 a
N~ 16kt p2 P

Foran SNR of 15dB
p=101% = 31.623

Using this value for p and with k& = 4, we have
€2, =17.32(1077) + 0.032a

The plot is obviously linear in o with a slope of 0.032. The bias, 7.32 x 1077, is negligible.
Note that for £ > 1 and reasonable values of the pilot signal-to-noise ratio, p, the ..rst term
(the bias), which arises from pilot phase jitter, is negligible. The performance is limited by
the additive noise.

Problem 6.18
The mean-square error
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can be written

e2(AT)=F {y2 (t) —2Ax(t — 1)y (1) + A2 (t — 7')}

In terms of autocorrelation and cross correlation functions, the mean-square error is
e2(A,7) = Ry (0) — 2ARyy () + A*R, (0)
Letting P, = R, (0) and P, = R, (0) gives
&2 (A,7) = P,— 2AR,, (1) + AP,

In order to minimize 2 we choose 7 = 7, such that R,, (7) is maximized. This follows
since the crosscorrelation term is negative in the expression for 2. Therefore,

€2 (A, Tm) = Py — 2ARyy () + AP,
The gain A,,, is determined from

E——QAR (Tm) +A2P, =0
dA xzy \Tm =

which yields

This gives the mean-square error

F ) =y -2y
which is
2 (A, ) = Py — =2
The output signal power is
Sp = E{[Amm (t— Tm)]2} =A2 P,

which is

o R?cy (Tm) - Rgzcy (Tm)
P R (0)

Since Np is the error €2( Ay, 7m) We have

SD R%y (

Tm)
Np Ry (0) Ry(0) — R%, (Tm)

Sp
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Note: The gain and delay of a linear system is often de..ned as the magnitude of the
transfer and the slope of the phase characteristic, respectively. The de..nition of gain and
delay suggested in this problem is useful when the magnitude response is not linear over
the frequency range of interest.

Problem 6.19
The single-sided spectrum of a stereophonic FM signal and the noise spectrum is shown in
Figure 6.6. The two-sided noise spectrum is given by

2

S (f) = iigNof, Cso< f< oo

The predetection noise powers are easily computed. For the L + R channel
15,000 g2 K2
Purir= 2/ ZQDNO fAdf = 2.25 (10'%) Z2DN0
0 C C
For the L — R channel
53,000 fo2 K2
Pni-r= 2/ —2 No f2df =91.14 (10'?) =2 Ny
23,00 Af AL

Thus, the noise power on the L — R channel is over 40 times the noise power in the L + R
channel. After demodulation, the dicerence will be a factor of 20 because of 3 dB detection
gain of coherent demodulation. Thus, the main source of noise in a stereophonic system
is the L — R channel. Therefore, in high noise environments, monophonic broadcasting is
preferred over stereophonic broadcasting.

Problem 6.20
The received FDM spectrum is shown in Figure 6.7. The kth channel signal is given by

xk (t) = Agmy (t) cos 2k fit

Since the guardbands have spectral width 4W, fk = 6kW and the kth channel occupies
the frequency band
6k —1) W< f<(6E+1)W
Since the noise spectrum is given by
K2
SnF ZA—QDNO 2 1fl < Br
c
The noise power in the kth channel is

(6k+1)W 3
Ny = B/ r2af = B [(Gk; +1)° — (6k — 1)3]
(6k—1)W 3
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Plot Noise Spectrum
S (f
L(f)+R(f) L(f)+R(f) < (1)
>
f (kHZ)
0 15 23 53

Figure 6.6:

where B is a constant. This gives

BW3
3

N = (216K* + 2) = 7T2BW?k?

The signal power is proportional to A%. Thus, the signal-to-noise ratio can be expressed as

NAZ A2
(SNR) :?& =A <?>

where \ is a constant of proportionality and is a function of Kp,W,Aq-,Ny. If all channels
are to have equal (SNR), Aj/k must be a constant, which means that A, is a linear
function of k. Thus, if A; is known, A, = k A, k= 1,2,...,7. A; is .xed by setting the
SNR of Channel 1 equal to the SNR of the unmodulated channel. The noise power of the
unmodulated channel is

w B
%:B/ fdf =—w3
0 3
yielding the signal-to-noise ratio

i)
Lws

(SNR)p =

where F, is the signal power.

Problem 6.21
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Noise

Figure 6.7:

From (6.132) and (6.119), the required ratio is

f3

K2 _
R— 25 Noff (4 — tan )

K2
37 NoW?

L BW W
R‘3<W> (fa o f3>

This is shown in Figure 6.8.
For f3 = 2.1kHz and W = 15k Hz, the value of R is

21\? [ 15 . 15
R—3<15) <2.1—tan 2.1>_0.047

R =10log,,(0.047) = —13.3 dB

or

Expressed in dB this is

The improvement resulting from the use of preemphasis and deemphasis is therefore 13.3 dB.
Neglecting the tan—!(1W/ f5) gives an improvement of 21 — 8.75 = 12.25 dB. The dicerence
is approximately 1 dB.

Problem 6.22
From the plot of the signal spectrum it is clear that

A

h=E
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091

08}

07}

06}

04}

03}

02}

01}

Figure 6.8:

I |IUS the Slgnal power |S
S = 2/ ) df A
= e f = = |/|/

The noise power is NoB. This yields the signal-to-noise ratio

2 AW
N ==—
(SNR), 3 NoB
If B is reduced to W, the SNR becomes
2 A
(SNR), = 3N,

This increases the signal-to-noise ratio by a factor of B/W.

Problem 6.23
From the de..nition of the signal we have

x(t) = Acos2mf.t

%: = 2rf.,Asin2nf.t
2
dx = —(27rfc)2Ac0527rfct

dt?

10
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The signal component of y (¢) therefore has power
Sp = éA2 (2 f)t = 842 14
The noise power spectral density at y (t) is

Sn () =32 (2f)’

so that the noise power is

N w 16

Np == (2m)* / FAf = — Nor*W®
2 W 5

Thus, the signal-to-noise ratio at y (¢) is

5 A2 [ f\!
(SNE)p =530 (%)

Problem 6.24
Since the signal is integrated twice and then dicerentiated twice, the output signal is equal
to the input signal. The output signal is

ys (t) = Acos2mfet
and the output signal power is
1
Sp = 5142

The noise power is the same as in the previous problem, thus

1
Np = EG Nom*w®
This gives the signal-to-noise ratio
__5 4
321 NoWs

(SNR)p

Problem 6.25
The signal-to-noise ratio at y (¢) is
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Figure 6.9:

The normalized (SNR) ,, de..ned by (SNR),/(2A?Ny), is illustrated in Figure 6.9.

Problem 6.26
The instantaneous frequency deviation in Hz is

6f = fam(t) =z ()
where z (t) is a zero-mean Gaussian process with variance o2 = f202,. Thus,

T o [

0f] = || =

2 2
e /20’zdx
—oo V27O,

Recognizing that the integrand is even gives

16f] = \/ / ze %20 gy = \/
W = \/_zfdo-m

Therefore,



6.1. PROBLEMS 23
Substitution into (6.148) gives

W nNoW
B A2L: f m —A2
1+ 2V38£Q {\/ NOBT] + 6, /2445 exp [2N0§T]

The preceding expression can be placed in terms of the deviation ratio, D, by letting

9
(SNR), = 3 (i) mish

Jfa
D=+
W
and
Br=2(D+1)W
Problem 6.27

(Note: This problem was changed after the ..rst printing of the book. The new problem,
along with the solution follow.)

Assume a PCM system in which the the bit error probability P, is su¢ciently small to
justify the approximation that the word error pobability is P, ~ nP,. Also assume that
the threshold value of the signal-to-noise ratio, de..ned by (6.175), occurs when the two
denominator terms are equal, i.e., the erect of quantizating errors and word errors are
equivalent. Using this assumption derive the threshold value of Pr/NyB, in dB for n =4, 8,
and 12. Compare the results with Figure 6.22 derived in Example 6.5.

With P, = nPB,, equating the two terms in the denominator of (6.175) gives

27" = nPy(1— 272"
Solving for B, we have

" pl—2n
From (6.178)

Solving for Pr/NoB, gives, at threshold,

Pr
NoB,

~ —2In [1 2(12”>} =2(2n —1)In(2) + 21n(2)

n

The values of Pr/NyB, forn = 4,8, and 12 are given in Table 6.1. Comparison with Figure
6.22 shows close agreement.
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Table 6.1:
n | Threshold value of Pr/NyB,
4 10.96 dB
8 13.97 dB
12 15.66 dB

Problem 6.28
The peak value of the signal is 7.5 so that the signal power is

1
Sp=3 (7.5)% = 28.125

If the A/D converter has a wordlength n, there are 2" quantizing levels. Since these span
the peak-to-peak signal range, the width of each quantization level is

15

Sp=g, =15(27")
This gives ) )
G e < 2 (92 _ —2
e =155 =15 (15)° 27") = 18.75(27™")
This results in the signal-to-noise ratio
28.12
sng =22 _ 28125 (22") =15 (2"




Chapter 7

Binary Data Communication

7.1 Problem Solutions

Problem 7.1
The signal-to-noise ratio is
AT A2
2= — =
No NoR

Trial and error using the asymptotic expression Q (z) ~ exp (—2?/2) / (v27z) shows that

Py =Q (\/Z) — 1075 for » = 9.58 dB = 9.078

Thus
AZ
—— =9.078
NoR
or
A = +/9.078NyR
= 1/9.078 x 10~7 x 20000
= 0.135V
Problem 7.2

The bandwidth should be equal to the data rate to pass the main lobe of the signal spectrum.
By trial and error, solving the following equation for z,

PE’desired = Q (\/ 2 Z|required> y &= Eb/NO
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we find that 2|, upeq = 6.78 dB (4.76 ratio),8.39 dB (6.90 ratio), 9.58 dB (9.08 ratio),
10.53 dB (11.3 ratio) for Pg|yeq = 1073, 1074, 1075, 1075, respectively. The required
signal power is

Ps, required — Eb, required/Tsymbol = E’b7 requiredR = Z’required NOR
For example, for Pz = 1072 and R = 1000 bits/second, we get
Py, required = Zlyequived NoR = 4.76 x 1070 % 1000 = 4.76 x 107> W

Similar calculations allow the rest of the table to be filled in, giving the following results.
R, bps | Pp =103 Pp =107 Pp=107° Pp =10
1,000 [[ 476 x 10703 W 6.9x 103 W 9.08x 102 W 11.3x 107> W

10,000 || 4.76 x 1072 W 6.9x102W 9.08x102W 11.3x102W
100,000 || 476 x 107! W 6.9 x 107! W 9.08 x 107! W 1.13 W

Problem 7.3
(a) For R = B = 5,000 bps, we have

signal power = A% = 2| sequired No R
= 10105%/10 501076 % 5,000
= 11.3x5x1073=0.0565 W

where 2|, uireq = 10.53 dB from Problem 7.2.
(b) For R = B = 50,000 bps, the result is

signal power = A2 = 0.565 W
(c¢) For R = B = 500,000 bps, we get

signal power = A% =5.65 W
(d) For R = B = 1,000,000 bps, the result is

signal power = A2 =11.3 W

Problem 7.4
The decision criterion is

V> g, choose + A
V < €, choose — A
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where
V=4+AT+ N

N is a Gaussian random variable of mean zero and variance o2 = NyT/2. Because
P (A sent) = P(—A sent) = 1/2, it follows that

1 1 1
PE:§P(—AT+N>€| —Asent)+§P(AT+N<€|Asent):§(P1+P2)

where
0 e /e —n*/NoT 2A2T 22
P = / dn=@Q
AT—|—€ NoT
A2T
= Q (\/2z+ \/56/0) ,0=NT, z=
0
Similarly
AT+e —172/N0T oo 2/N0T
ne | =/
VAT
2A2T
e R
Use the approximation
—u?/2
e
U =
Q (u) o
to evaluate
1

5 (Pt Py) = 1076

by solving iteratively for z for various values of /0. The results are given in the table
below.
elo || zqp for Pp =107 /o z4p for Pg = 1076
0 10.54 0.6 11.34

0.2 10.69 0.8 11.67
0.4 11.01 1.0 11.98
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Problem 7.5
Use the 2|, uireq Values found in the solution of Problem 7.2 along with 2|,,yieq = A%/NoR
to get R = A?/ 2| 4 No. Substitute Ng = 1075 V2/Hz, A = 20 mV to get R =

require

400/ 2| equireq- This results in the values given in the table below.
Py ” 2| oquireds dB (ratio) R, bps
101 8.39 (6.9) 57.97
107° 9.58 (9.08) 43.05
1076 10.53 (11.3) 35.4
Problem 7.6

The integrate-and-dump detector integrates over the interval [0, 7' — 4] so that the SNR is

Z/ _ A2 (T_ 6)
No

instead of z = A?T/Ny. Thus

and the degradation in z in dB is
T
D= —1010g10 <1 — g)

Using § = 1079 s and the data rates given, we obtain the following values of D: (a) for
1/T = R =10 kbps, D = 0.04 dB; (b) for R = 50 kbps, D = 0.22 dB; (c) for R = 100 kbps,
D = 0.46 dB.

Problem 7.7

(a) For the pulse sequences (—A, —A) and (A4, A), which occur half the time, no degradation
results from timing error, so the error probability is @ (\/W). The error probability
for the sequences (—A, A) and (A4, —A), which occur the other half the time, result in the
error probability @ [\/QEb /No (1 =2|AT|/T )} (sketches of the pulse sequences with the
integration interval offset from the transition between pulses is helpful here). Thus, the
average error probability is the given result in the problem statement. Plots are shown in
Figure 7.1 for the giving timing errors.

(b) The plots given in Figure 7.1 for timing errors of 0 and 0.15 indicate that the degradation
at Pp = 1076 is about 2.8 dB.
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Figure 7.1:

Problem 7.8
(a) The impulse response of the filter is

h(t) = (27 f3) e 2 st (1)

and the step response is the integral of the impulse response, or
a(t) = (1 - e_%f?’t) u (t)

Thus, for a step of amplitude A, the signal out at ¢t =T is
so(T)=A <1 - 6_27Tf3T>

The power spectral density of the noise at the filter output is

_ N0/2
D=y

so that the variance of the noise component at the filter output is

Nor f3

E[N2]:/Oo S, (f)df = = NoBn
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where By is the noise equivalent bandwidth of the filter. Thus

2 2A2 1— —27fsT 2
SNR = S0 (T) — ( € )
E[N?] Nom f3

(b) To maximize the SNR, differentiate with respect to f3 and set the result equal to 0.
Solve the equation for f3. This results in the equation

dm fsTe sl — 1 4 e72m/sT =
Let a = 27 f3T to get the equation
2a+1)e =1

A numerical solution results in o ~ 1.25. Thus

1.25
I3, opt = 5T~ 0.199/T = 0.199R

Problem 7.9
As in the derivation in the text for antipodal signaling,

1
var [N] = §N0T

The output of the integrator at the sampling time is

vV — AT + N, A sent
- N, 0 sent

The probabilities of error, given these two signaling events, are
1
P (error | Asent) = P <AT +N < §AT>

= P <N < —%AT)
—AT/2 ,—n?/NoT

C 4
AT

[ A2T
= @ 2Ny



7.1. PROBLEM SOLUTIONS 7

Similarly,
1
P (error | 0 sent) = P <N > §AT>
oo o—n?/NoT
_ / e
Ar/2 VTNoT
AT
= 2w
0
Thus

1 1
P = §P (error | A sent) + §P (error | 0 sent)

[ A2T
= @ 2Ny

But, the average signal energy is
Fave = P (Asent)x AT 4+ P (0 sent) x 0
1
= AT
2
Therefore, the average probability of error is

E ave

Pr=Q N

Problem 7.10
Substitute (7.27) and (7.28) into

Pg = pP(E[s1(t)+(1—p)P(E|s2(t))
00 eXp [— (v— 801)2 /203} k exp [— (v— 302)2 /203]
_ p/k

dv+ (1 — / dv
\/27703 ( P) —00 \/27ra%

Use Leibnitz’s rule to differentiate with respect to the threshold, k, set the result of the
differentiation equal to 0, and solve for k = k,p¢. The differentiation gives

exp [_ (k — 301)2 /203] exp [— (k— 802)2 /2‘73}

_ +(1—
P \/ 2770(2) ( P) \/ 271'0'%

k=kopt
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or
exp [— (Kopt — 301)2 /20%} ) exp [— (Kopt — 302)2 /203]
P \/ 2770% B P \/ 271'0%
or

1—
— (kopt — so1)” + (kopt — s02)? = 20%In <Tp>

2 2
Sto — S 1-—
(so1 — s02) kopt + % = o2ln <_p>
p
| — i 1m<1—20>+802—801
o 501 — S02 D 2

Problem 7.11

(a) Denote the output due to the signal as sq (¢) and the output due to noise as ng (t). We
wish to maximize

2@ 2 |[Su (f) 2 sto |

E[n2(t)] No f_ooH Hp, (f) df

By Schwartz’s inequality, we have

S(f)S*(f)df [ Hm (f)HE (f)d o0
2 [7 ff (f)f_z/ S (R df

sl 2 2
ER @] = Mo f H e (f) eJ27fft0df =N

where the maximum value on the right-hand side is attained if
Hy, (f) = 87 (f) e~ It0

(b) The matched filter impulse response is hy, (t) = s (tg — t) by taking the inverse Fourier

transform of H,, (f) employing the time reversal and time delay theorems.

(c) The realizable matched filter has zero impulse response for ¢ < 0.

(d) By sketching the components of the integrand of the convolution integral, we find the

following results:
For t() = O, S0 (to) =
For t() = T/Q, S0 (to)
For t() = T, S0 (to) = AZT
For to = 2T, S0 (to) AQT
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Problem 7.12
(a) These would be z (t) and y (t) reversed and then shifted to the right so that they are
nonzero for ¢ > 0.

(b) A=+T7B.

(¢) The outputs for the two cases are

So1(t) = A rA[(t —to) /7] = TB*TA[(t — to) /7]
Spa (t) = TB*rA[(t —to) /77]

(d) The shorter pulse gives the more accurate time delay measurement.
(e) Peak power is lower for y ().

Problem 7.13
(a) The matched filter impulse response is given by

b (t) = s2 (T —t) —s1 (T — t)

(b) Using (7.55) and a sketch of s3 (t) — s1 (¢) for an arbitrary o, we obtain

¢ = 2 [Cm0-aoPa

No | o
2 T
= — [A%y+4A%,+ A2 (= — ¢t
No[ o+ 0o+ 5 0
2 [A%T T
= — | +44% <t < —
NO[Q + 0]’0—0—2

This result increases linearly with ¢y and has its maximum value for for tg = 7'/2, which is
5A%T /Ny.
(¢) The probability of error is

7l
Pp=Q|—=
To minimize it, use the maximum value of ¢, which is given in (b).
(d) The optimum receiver would have two correlators in parallel, one for s; (¢) and one for
s2 (t). The outputs for the correlators at ¢ = T' are differenced and compared with the
threshold & calculated from (7.30), assuming the signals are equally likely.

Problem 7.14
Use Cfnax = 2F /Ny for a matched filter, where E; is the signal energy. The required values

for signal energy are: (a) A%T; (b) 34%T/8; (c) A%T/2; (d) A%T/3 (Note that AA [ﬁ%@]
in the problem statement should be AA [%#@} ).
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Problem 7.15
The required formulas are

E = (El + Eg)
Ry = — / 51 (t) s2 (
kopt — 5 (EZ - El)
(1-Ry9) E
Py = -
e = Q[

The energies for the three given signals are
Ej = A’T; Eg = B*T/2; Ec = 3C°T/8
(a) For s; = s4 and sy = sp, the average signal energy is
AT B2
F-2" (1422
> ( * 2A2>

The correlation coefficient is

Rip = —/ AB cos [ T/Q)} dt
T

Tt 2ABT

= / ABsm[ }d =

77 (A2 n B2 72)

The optimum threshold is
1 1 /B>
kopt:_(EB_EA):§ 5 —A* T

The probability of error is

Pp=Q

T B?  4AB
R 24 -
\/QNO (A * 2 s )
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(b) s1 =s4 and s2 = s¢ :

1
E = %(EA+EC):§(A2+3CZ/8)T
AC
fiz = A2 +3C2/8

(c) s1 =sp and sy = s¢ :

2
i<32+£>T

=
Il
N —

(Es + Ec) =

16BC
37 (B2 + 3C2%/4)

1 2
fon = 3 (Bo ~ Bn) = 1 (P~ 82) 7

T 3C%?  16BC
(B2 _
\/4N0 < * 4 T >

R, = -1
kopt =0
B2T
Pr =
E=Q N

11



12

(e) s1 = s¢ and s9 = —

Problem 7.16
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sc:

E = FEg=3C%T/8

Ry = -1
kopt = 0
3027
Pr =
E=Q SN

The appropriate equations to solve are

Pg
Pg
Pg

= Q[vz] =107°, ASK
— Q|2 —m?)z| =107, PSK, m = 0.2

= Q[vz] =107°, FSK

Trial and error shows that the Q-function has a value of 107 for it argument equal to 4.265.
Thus, we get the following results:

For ASK and FSK, \/z = 4.265 or z = 18.19 or zqp = 12.6 dB

For PSK with m = 0.2, /2 (1 — m2) z = 4.265 or z = 9.47 or zgp = 9.765 dB

Problem 7.17

The program is given below. Curves corresponding to the numbers given in Table 7.2 are

shown in Figure 7.2.

% Program bep ph error.m; Uses subprogram pb phase pdf
% bep_ph_error.m calls user-defined subprogram pb_phase pdf.m
% Effect of Gaussian phase error in BPSK; fixed variance

clf

sigma_ psi2 = input("Enter vector of variances of phase error in radians”2 ’);
L sig = length(sigma psi2);

Eb NO dB min = input(’Enter minimum Eb/NO desired ’);

Eb NO dB max = input(’Enter maximum Eb/NO desired ’);

A = char(’-)7 )=,

a_mod = 0;
form = 1:L_sig
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Eb_NO_dB = [|;
Eb NO = [|;
PE = [];
k=1
for snr = Eb N0 dB min:.5:Eb NO dB max
Eb NO dB(k) = snr
Eb_No(k) = 10.~(Eb_N0_dB(k)/10);
sigma_ psi = sqrt(sigma_ psi2(m));
Eb_NO
PE(k) = quad8(’pb_ phase pdf’,-pi,pi,[],[],Eb_NO(k),sigma_psi,a_mod)
k = k+1;
end
PE
semilogy(Eb_NO_dB, PE,A(m,:)),xlabel’E_b/N 0, dB’),ylabel(’P_b’),...
axis([Eb_NO dB min Eb NO dB max 10°(-7) 1)),...
ifm==1
hold on
grid on
end
end
P _ideal = .5*erfc(sqrt(Eb_NO));
semilogy(Eb_NO dB, P_ideal),...
legend('BPSK; \sigma \theta e"~2 =’ num2str(sigma psi2(1))],
'BPSK; \sigma \theta e”2 =’ num?2str(sigma psi2(2))],
BPSK; \sigma \theta e"2 =’ num?2str(sigma_psi2(3))],
'BPSK; \sigma_ \theta e"2 = 0’],3)

% pb__phase pdf.m; called by bep ph_error.m and bep ph error2.m
%

function XX = pb_phase pdf(psi,Eb NO,sigma_psi,a)

arg = Eb_NO*(1-a~2)*(cos(psi)-a/sqrt(1-a~2)*sin(psi))."2;

T1 = 5*erfc(sqrt(arg));

T2 = exp(-psi.”2/(2*sigma_ psi~2))/sqrt(2*pi*sigma_psi~2);

XX = T1.¥T2;

Problem 7.18
From the figure of Problem 7.17, the degradation for aé = 0.01 is about 0.045 dB; for
ai = 0.05 it is about 0.6 dB; for Ui = 0.1 it is about 9.5 dB. For the constant phase error
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E, /My, dB

Figure 7.2:

model, the degradation is

Dconst =-20 1OglO [COS (¢const)]

As suggested in the problem statement, we set the constant phase error equal to the standard
deviation of the Gaussian phase error for comparison putposes; thus, we consider constant
phase errors of ¢, = 0.1, 0.224, and 0.316 radians. The degradations corresponding to
these phase errors are 0.044, 0.219, and 0.441 dB, respectively. The constant phase error
degradations are much less serious than the Gaussian phase error degradations.

Problem 7.19

(a) For ASK, Pg = Q[/z] = 1077 gives z = 18.19 or 2z = 12.6 dB.

(b) For BPSK, Pg = Q [V2z] = 1075 gives z = 9.1 or z = 9.59 dB.

(c) Binary FSK is the same as ASK.

(d) The degradation of BPSK with a phase error of 5 degrees is Deonst = —201og; [cos (5°)] =
0.033 dB, so the required SNR to give a bit error probability of 107° is 9.59 4 0.033 = 9.623
dB.

(e) For PSK with m = 1/v/2, P = Q [\/2 a-1/2) z} = Q7] = 1075 gives 2 = 18.19 or
2 =12.6 dB.

(f) Assuming that the separate effects are additive, we add the degradation of part (d) to
the SNR found in part (e) to get 12.6 + 0.033 = 12.633 dB.
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Problem 7.20

The degradation in dB is Deonst = —20logyg [cos (¢)]. It is plotted in Figure 7.3.

The degradations for phase errors of 3, 5, 10, and 15 degrees are 0.0119, 0.0331, 0.1330, and
0.3011 dB, respectively.

Problem 7.21

(a) Solve Pp = @ (v/22) = 107* to get z = 8.4 dB. From (7.73), the additional SNR
required due to a carrier component is —10log;, (1 — mg). A plot of SNR versus m is
given in Fig. 7.4.

(b) Solve Pg = Q (1/z) = 1075 to get z = 9.57 dB. A plot of SNR versus m is given in Fig.
7.4.

(c) Solve Pp = Q(y/z) = 1075 to get z = 10.53 dB. A plot of SNR versus m is given in
Fig. 7.4.

Problem 7.22

(a) For BPSK, an SNR of 10.53 dB is required to give an error probability of 1076. For
ASK and FSK it is 3 dB more, or 13.54 dB. For BPSK and ASK, the required bandwidth
is 2R Hz where R is the data rate in bps. For FSK with minimum tone spacing of 0.5R Hz,
the required bandwidth is 2.5R Hz. Hence, for BPSK and ASK, the required bandwidth
is 200 kHz. For FSK, it is 250 kHz.
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Figure 7.4:

(b) For BPSK, the required SNR is 9.6 dB. For ASK and FSK it is 12.6 dB. The required
bandwidths are now 400 kHz for BPSK and ASK; it is 500 kHz for FSK.

Problem 7.23
The correlation coefficient is

1 T
R12 = E /0 S1 (t) S92 (t) dt

T
— % / A? cos (wet) cos [(we + Aw) t] dt
0
= sinc (2AfT)

where Af is the frequency separation between the FSK signals in Hz. Using a calculator,
we find that the sinc-function takes on its first minimum at an argument value of about
1.4, or Af = 0.7/T. The minimum value at this argument value is about -0.216. The
improvement in SNR is —10log;o (1 — Ri2) = —101log;o (1 + 0.216) = 0.85 dB.

Problem 7.24

The encoded bit streams, assuming a reference 1 to start with, are: (a) 1 100 001 000 010;
(b) 1100 110 011 001; (c) 1 111 111 111 111; (d)1 010 101 010 101; (e) 1 111 111 010 101;
(f) 1 110 000 011 011; (g) 1 111 010 000 101; (h) 1 100 001 000 010.
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Problem 7.25

The encoded bit stream is 1 110 000 100 110 (1 assumed for the starting reference bit). The
phase of the transmitted carrier is 000r7m77m0rw007w. Integrate the product of the received
signal and a 1-bit delayed signal over a (0, T') interval. Each time the integrated product is
greater than 0, decide 1; each time it is less than 0, decide 0. The resulting decisions are 110
111 001 010, which is the message signal. If the signal is inverted, the same demodulated
signal is detected as if it weren’t inverted.

Problem 7.26
Note that

Efm] = E [ / Y () cos (wet) dt} _ / " Bn (0)] cos (wet) dt = 0

=T =T

which follows because E [n (t)] = 0. Similarly for ng, n3, and ns. Consider the variance of
each of these random variables:

0 (0
var[ni] = E [nﬂ =F [/_T /_Tn (t) n (N) cos (wet) cos (weA) dtdA
0 (0
= / / En(t)n(N)]cos (wet) cos (weA) dtd)
-TJ-T

0 0 NO
= / — 06 (t — A\) cos (wet) cos (weA) dtd
) 2

No (° NoT
= 22 / cos? (wet) dt = o
2 s 4

where the fact that E [n (t)n (\)] = %(5 (t — A\) has been used along with the sifting property
of the é-function to reduce the double integral to a single integral. Similarly for ns, ns,
and ny4. Therefore, wy has zero mean and variance

1 1 NoT
var [wq] = Zvar [n1] + Zvar [na] = %

Similarly for we, ws, and wy.

Problem 7.27
The two error probabilities are

1 _
PE, opt = 56 * and PE, delay-and-mult =2 Q (\/E)

Comparative values are:
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” 2, dB || JDE7 opt | PE, delay-and-mult ||
81 9.1x107* 6.8 x 1072
91 1.8x107* 2.7 x 1073
10 || 2.3 x 107° 8.5 x 107*
11 [ 1.7 x 1076 2.1x107*

Problem 7.28
Noncoherent binary FSK has error probability

Pr NCFSK = EG*ZNCFSKQ
' 2
Solve for the SNR to get
ZNeoFsK = —21n (2Pg, NoFsk)
DPSK has error probability
T, .
Pg, ppsk = 3¢ FDPSK
Solve for the SNR to get
zppsk = — In (2Pg, ppsk)
The values asked for are given in the table below:
| Pe | 2xcrsk, dB | zppsk, dB |
1073 10.94 7.93
107 13.35 10.34
10-7 14.89 11.88
Problem 7.29
Bandwidths are given by
Bppsk = DBppsk = 2R; Rppsk = Repsk = Bppsk/2 = 50 kbps
Bersk = 2.5R; Rcersk = Bppsk /2.5 = 40 kbps

Bxersk = 4R; Rncrsk = Bppsk /4 = 25 kbps
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Problem 7.30

Consider the bandpass filter, just wide enough to pass the ASK signal, followed by an
envelope detector with a sampler and threshold comparator at its output. The output of
the bandpass filter is

u(t) = Agcos(wet+0)+n(t)
= Agcos (wet + O) + ne (t) cos (wet + O) — ng (t) sin (wet + O)
= x(t)cos(wct + O) — ng (t) sin (w.t + O)

where Ay = A if signal plus noise is present at the receiver input, and A = 0 if noise alone
is present at the input. In the last equation

x(t) = Ap + nc (1)
Now wu (t) can be written in envelope-phase form as
u(t) =7 (t)cos[wet + O + ¢ (1)]
where

() = VD 0 and o (0) = tant | 220

The output of the envelope detector is r (¢), which is sampled each T seconds and compared
with the threshold. Thus, to compute the error probability, we need the pdf of the envelope
for noise alone at the input and then with signal plus noise at the input. For noise alone,
it was shown in Chapter 4 that the pdf of r (¢) is Rayleigh, which is

fr(r) = %677‘2/2]\[, r > 0, noise only

where N is the variance (mean-square value) of the noise at the filter output. For signal
plus noise at the receiver input, the pdf of the envelope is Ricean. Rather than use this
complex expression, however, we observe that for large SNR at the receiver input

r(t) & A+ nc(t), large SNR, signal present

which follows by expanding the argument of the square root, dropping the squared terms,
and approximating the square root as

1
\/1+6%1+§6, le] << 1

Thus, for large SNR conditions, the envelope detector output is approximately Gaussian
for signal plus noise present. It has mean A and variance N (recall that the inphase and
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quadrature lowpass noise components have variance the same as the bandpass process).
The pdf of the envelope detector output with signal plus noise present is approximately

e—(r—A)?/2N

fR (T) = W, large SNR

For large SNR, the threshold is approximately A/2. Thus, for noise alone present, the
probability of error is exactly

e}
P(E[0)= / e TN g — o A/3N
a2 R

For signal plus noise present, the probability of error is approximately

ar=Q (VAZ]2N)

A/2 ,—(r—A)*/2N

—o V2t N

e~ A?/AN

VT/NA

P(E| S+ N present)

Q

Now the average signal-to-noise ratio is

1 A%)2 AP
*T9N,Br 4N

which follows because the signal is present only half the time. Therefore, the average
probability of error is

1 1 - 1
Pp=3P(E|S+N)+5P(E|0)~ C e

Viarz 2

Problem 7.31
This is a matter of following the steps as outlined in the problem statement.

Problem 7.32

Do the inverse Fourier transform of the given P (f) to show that p () results. The derivation
is quite long and requires a fair amount of trigonometry. Only a sketch is given here. It is
also useful to note that for an even function, the inverse Fourier transform integral reduces
to

p(t) = /0 P (f) exp (j2n 1) df =2 /0 TP (f) cos (2nt) df
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because P (f) is even. Now substitute for P (f) from (7.124) to get

1-8 148

p(t) = 2/02 TCOS(27Tft)df+2/_?g{1+cos [% (f—%)]}cos(%rft)df

2T

i [27r ( 2T5> { L 2r (52) 4]

1+ﬁ
[ g -2

= cos(mft/T) sinc (t/T)

T cos%(u% ) cos[F (1) 5 - 5]
2 ﬂ(1+%t> ﬂ(l—%t)

L B T 3 T ]
[l (20 58] e[ (10 % 8]’
2 T 23 T 25

i %(1+Tt> %(1_Tt |

= cos (Wﬂt/T) sinc (t/T)

+T cos _”ﬂT(l%—wt)—Tﬂ—%_ — CoS _%(14—%75)%—%_—
2 ”T(1+¥t>

[ | 2T 28, 1+8 ] ar 26,\ 1-8 T
T cos |5 (1= 31) 57 - 5] —cos |[F (1-F1) 57 - 55
2
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Expand the trigonometric function arguments to get

p(t) = cos(mBt/T) sinc(t/T)

ﬂﬂc%Krwﬂ%+%]cwu1—m%—g{
+§ T 28

: F(1+%1) _
T |cos[A+0) 7 — 5] —cos (1= B) T + 5]
+E T 208

- F(1-#) _

Expand the cosines using to get

p(t) = cos(wpt/T) sinc (t/T)

sin [(1+ 3) %] +sin [(1 — 8) %]
=L (1 - ?t)

cos (mft/T) sin (nt/T)

2nt T
%(2—&+1>

T
2

T

2

sm[(l—i—ﬁ)’%] n[(lﬂ)T]:|
F(1-%)
n {cos (wBt)T) sin (wt/T)

= cos(nft/T) sinc(t/T) — 2t ( 1)
T \28t

T

it

1 1

1- 5 (g%t N 1) + ; (2%t - 1)] cos (mpt/T") sin (nt/T')

cos (mft/T') sinc (t/T)
1—(26t)T)*

Problem 7.33
For B = 0.25,
0.75

2T

T, 0<|f| <
“ﬂ@%%ms%m

P(f){ T{l—i—cos[ (]f| o)

The optimum transmitter and receiver transfer functions are

AP (DM G ()

‘HT (f)‘opt = |HC (f)|1/2
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and

K|P(f)]"?
& (f) [He (f)Y?

Setting all scale factors equal to 1, these become

() P (HIM? R+ (F) fe)?
T opt =
WL+ (f/ f3)?

HR (Nlope = [P (O N1+ (F/£3)7 Y1+ (F/ fo)”

[HR ()lopt =

A MATL:AB program for computing the optimum transfer functions is given below. Plots
for the various cases are then given in Figures 7.5 - 7.7.

% Problem 7.33: Optimum transmit and receive filters for raised-cosine pulse shaping,

% first-order Butterworth channel filtering, and first-order noise spectrum

%

A = char(’-’):’)-)-);

clf

beta00 = input('Enter starting value for beta: >=0 and <= 1");

del beta = input(’Enter step in beta: starting value + 4*step <= 1");

R =1

f 3=R/2;
f C=R/2
delf = 0.01;
HT _opt = [J;
HR_opt = [J;
forn =14

beta = (n-1)*del beta+beta00;

betaO(n) = beta;

f1 = 0:delf:(1-beta)*R/2;

f2 = (1-beta)*R/2:delf:(1+beta)*R/2;

f3 = (1+beta)*R/2:delf:R;

£ = [f1 £2 £3)];

P1 = ones(size(fl));

P2 = 0.5%(1+4-cos(pi/(R*beta)*(£2-0.5%(1-beta)*R)));
P3 = zeros(size(f3));

Gn = 1./(1+(f/f_3).72);
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R =1 bps; channel filter 3-dB frequency = 0.5 Hz; noise 3-dB frequency = 0.5 Hz
5 T T T T T T T T T

0 I 1 1 I I I L 1 R —
0 0.1 0.2 0.3 0.4 0.5 0.5 0.7 e 1
f, Hz

Figure 7.5: f3 = fo =1/2T

HC = 1./sqrt(1+(f/f _C).~2);
P = [P1 P2 P3);
HT opt = sqrt(P).*(Gn.”.25)./sqrt(HC);
HR opt = sqrt(P)./((Gn.”.25).*sqrt(HC));
subplot(2,1,1),plot(f,HR opt,A(n,:)),xlabel(’f, Hz’),ylabelClH_ R _, o p_ t(f)||")
title(R = ’,num2str(R),” bps; channel filter 3-dB frequency = ' num2str(f C),’
Hz; noise 3-dB frequency = ’",;num2str(f 3),” Hz'])
ifn==1
hold on
end
subplot(2,1,2),plot(f, HT opt,A(n,:)),xlabel(’f, Hz’),ylabelC|lH_T , o p_ t(f)]’)
ifn==
hold on
end
end
legend([’\beta = ’num?2str(beta0(1))],["\beta = ’,num?2str(betad(2))],
["\beta = ’,num2str(beta0(3))],[’\beta = ’,num2str(betad(4))],1)
(a) f3 = fc=1/2T
(b) fc =2f3=1/T
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R =1 bps; channel filter 3-dB frequency = 1 Hz; noise 3-dB frequency = 0.5 Hz
5 T T T T T T T T T

Figure 7.6: fo =2f3=1/T

(c) fs =2fc =1/T
Problem 7.34

This a simple matter of sketching A (f/B) and A [(f — $B) /B] side by side and showing
that they add to a constant in the overlap region.

Problem 7.35

Follow the steps outlined in the problem statement.

Problem 7.36
(a) The optimum transmitter and receiver transfer functions are

_AIP(NIMPG ()
|HT (f)|opt - ’HC (f)’1/2

and

K|P(f)"*
Gy () | He ()M?

’HR (f)’opt =

where P (f) is the signal spectrum and A and K are arbitrary constants which we set equal



26 CHAPTER 7. BINARY DATA COMMUNICATION

R =1 bps; channel filter 3-dBE frequency = 0.5 Hz; naoise 3-dB frequency = 1 Hz
15 T T T T T T T T T

0 0.1 Bz B3 B4 B BE Oy BR 0Y 1
f, Hz

Figure 7.7: f3=2fc =1/T

to 1 for convenience. From the problem statement, Gt (f) = (10712 Y4 21073 and

1
1+ (f/4800)*

|He (f)] =

The signal spectrum is, for g =1,

_ 1 ™ |f]
P(f) = m[1+cos<m>]70§|f|§4800Hz
b}

— cos? <Ifl <
4800 °° <9600)’0—‘f|—4800 Hz

Thus,

|HT (f)|opt = |HR (f)’opt =

7 |f]
cos <M>‘ \/1+ (f/4800)%, 0 < |f| < 4800 Hz

where all scale factors have been set equal to 1.
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Problem 7.37
The MATLAB program is given below and Figure 7.8 shows the probability of error curves.
% Plots for Prob. 7.37
%
clf
A = char(-’)-" -0 )0=0 0=,
delta = input(’ Enter value for delta: ’)
taum TO = input(’ Enter vector of values for tau _m/T: ’)
L _taum = length(taum TO0);
z0 dB = 0:.1:15;
z0 = 10.7(z0_dB/10);
for Il = 1:L._ taum
11
taum T = taum TO(1l)
P E = 0.5*qfn(sqrt(2*z0)*(1+delta))+0.5%qfn(sqrt (2*20)*((1+delta)-2*delta*taum T));
semilogy(z0 _dB, P_E,A(1l,:))

ifll ==1
hold on; grid on; axis([0, inf, 107 (-6), 1]); xlabel(’z_0, dB’); ylabel('P_E’)

end
end
title('P_E versus z_ 0 in dB for \delta = ’, num2str(delta)])
if L taum ==

legend([’\tau_m/T =’ num2str(taum_TO0)],3)
elseif L taum == 2

legend(["\tau m/T =’num2str(taum TO0(1))],["\tau m/T =’ num2str(taum_T0(2))],3)
elseif L taum == 3

legend([’\tau_m/T =’num2str(taum_TO0(1))],["\tau _m/T =’ num2str(taum_T0(2))],
P\tau m/T =’ num2str(taum_T0(3))],3)
elseif L taum ==
legend([’\tau_m/T =’ num2str(taum_TO0(1))],["\tau _m/T =’ num2str(taum_T0(2))],
[\tau m/T =’num2str(taum_TO0(3))],['\tau m/T =’ num2str(taum_T0(4))],3)
end
Problem 7.38
The program given in Problem 7.37 can be adapted for making the asked for plot.
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Figure 7.8:

Problem 7.39
(a) The output of the channel in terms of the input is

y(t) = (t) + B (t — 7m)

Fourier transform both sides and take the ratio of output to input transforms to obtain the
channel transfer function:

Ho(f) = 57 = 1 +Be 7/

Using Euler’s theorem to expand the exponential and finding the maginitude gives

|Ho (f)] = /1 + 28.cos (27 f7m) +
Plots are shown in Fig. 7.9 for # = 0.5 and 1.0.

% Plots for Prob. 7.39

%o

clf

A — Char(","7,,".”’:77’7.”,—..’);

tau_m = input(’ Enter value for tau_m: ’)
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beta0 = input(’ Enter vector of values for beta: )
L beta = length(betal)
f =-1:.005:1;
for Il = 1:L._ beta
beta = beta0(1l);
arg = 14+2*beta*cos(2*pi*tau_m*f)+beta"2;
mag H = sqrt(arg);
plot(f, mag H, A(1l,:))

ifll ==1
hold on; grid on; xlabel(’f’); ylabel(’|H(f)|")
end
end
title(["|H(f)| versus f for \tau m =’, num2str(tau_m)])
if L beta ==

legend(["\beta = ’,;num2str(beta0)],3)

elseif L. beta ==
legend([’\beta = ’num?2str(beta0(1))],["\beta = >, num2str(betad(2))],3)

elseif L beta == 3
legend(["\beta = ’,;num2str(beta0(1))],[’\beta = ’,num2str(beta0(2))],
["\beta = ’,num2str(betal(3))],3)

elseif L beta ==
legend(["\beta = ’,;num2str(beta0(1))],[’\beta = ’,;num2str(beta0(2))],
["\beta = ’,num2str(beta0(3))],["\beta = ’,;num2str(beta0(4))],3)

end

(b) The output of the tapped delay line filter in terms of the input is

N
2(t) = Baylt— (n—1)A]
n=0

29

Fourier transform this equation and take the ratio of the output to the input transforms to

obtain the transfer function of the equalizer as

Heq (f) = % = Zﬁ”e—jQW(n—l)Af

n=0
(c) From part (a) and using the geometric expansion, we obtain

(e o]

_ Z (_1)71 ﬁneijﬂ'nTmf

n=0

1 1
Ho(f) T+ pe
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Figure 7.9:

Equate this to the result of part (b) with 7,, = A. Clearly, 3, = (—8)" .

Problem 7.40
The appropriate equations are:
BPSK: (7.73) with m = 0 for nonfading; (7.174) for fading;
DPSK: (7.111) for nonfading; (7.176) for fading;
CFSK: (7.87) for nonfading; (7.175) for fading;
NFSK: (7.119) for nonfading; (7.177) for fading.
Degradations for Pg = 1072 are:

|| Modulation type | Fading SNR, dB | Nonfaded SNR, dB | Fading Margin, dB ||

BPSK 13.85 4.32 9.52
DPSK 16.90 5.92 10.98
Coh. FSK 16.86 7.33 9.52
Noncoh. FSK 19.91 8.93 10.98

Problem 7.41
See Problem 7.40 for equation reference numbers. The inverse equations, expressing signal-
to-noise ratio in dB, are:
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(a) BPSK

1
zppsk, N = 10logy {5 Q1 (PE)}Q} dB

(1—2Pg)?
z = 10lo — -3 dB
BPSK, F g10 { 1—(1— 2PE)2

The margin in dB is the difference between these two results for a given Pg.
(b) DPSK

2ppsk, Nk = 10logio {—In(2Pg)} dB

1
2ppsk, F = 10logy {E - 1} dB

(c) Coherent FSK

_ 2
ZBPSK, NF = 1010%10{[@ ' (Pg)] } dB
ZBPSK,F = 1010g10{
(d) Noncoherent FSK

ZNCcFSK, NP = 10logio {—2In(2Pg)} dB

1
zNersk, F = 10logqq {P—E — 2} dB

The fading margin for these various modulation cases are given in the table below for
Pr =103,
|| Modulation type | Fading SNR, dB | Nonfaded SNR, dB | Fading Margin, dB ||

BPSK 23.97 6.79 17.18
DPSK 26.98 7.93 19.05
Coh. FSK 26.98 9.80 17.18
Noncoh. FSK 29.99 10.94 19.05

Problem 7.42

The expressions with Q-functions can be integrated by parts (BPSK and coherent FSK).
The other two cases involve exponential integrals which are easily integrated (DPSK and
noncoherent FSK).
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Problem 7.43
We need to invert the matrix

1 01 —0.01
Pcl=1] 02 1 01
—0.02 02 1

Using a calculator or MATLAB, we find the inverse matrix to be

1.02 —0.11 0.02
[Po] ™ =] —021 1.04 —0.11
0.06 —0.21 1.02

The optimum weights are the middle column.
(a) The equation giving the equalized output is

Peq (MT) = —0.11pc [(m + 1) T] + 1.04pc [mT'] — 0.21pc [(m — 1) T
(b) Calculations with the above equation using the given sample values result in
Peq (—2T) = —0.02; peq (—T") = 0; peq (0) = 1; peq (T') = 0; peq (21) = —0.06

Note that equalized values two samples away from the center sample are not zero because
the equalizer can only provide three specified values.

Problem 7.44
(a) The desired matrix is

No (1 + b2) zZ 4+ % bz + %6_27T %6_47T
[Ryy] = T bz+Ze ™ (1+0?)z+3% bz+Ze ™
Fem bzt Te? (140%) 243

(b) The following matrix is needed:

Ryq (—T) 0
[Ryd] = Ryq (0) = A
Ryq (T) bA

Multiply the matrix given in (a) by the column matrix of unknown weights to get the
equations

Ny (1+0*)z2+% bzt Ze " Zeim a_y 0
- bz+Ze ™ (1+b%)z+% bz+Ze ™™ ay | =1 A
Zeim bz+%e®™  (1+b%)z+3 a} bA
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or
(1+b*)z+% bz+5e ™ Zeim a_q 0 0
bZ+ T 27 (1 + b2) Z—i—% bz + %6_27T ao = AQT/NO = z

Ze *4” bz+Ze ™ (1+0%)z+3 ai bA*T /Ny bz

where the factor No/T has been normalized out so that the right hand side is in terms of
the signal-to-noise ratio, z (the extra factor of A needed mulitplies both sides of the matrix
equation and on the left hand side is lumped into the new coefficients a_1, ag, and ay.
Invert the matrix equation above to find the weights. A MATLAB program for doing so is
given below. For z = 10 dB and b = 0.1, the weights are a_; = —0.2781, ag = 0.7821, and
a1 = 0.0773.

% Solution for Problem 7.44
%
z_dB = input('Enter the signal-to-noise ratio in dB ’);
z = 10" (z_dB/10);
b = input("Enter multipath gain ’);
R_yy(1,1)=(14b"2)*z+pi/2;
R_yy(2,2)=R_yy(1,1);
R_yy R_yy(1,1);
:b* +(pi/2)*exp(-2*pi);
)*exp( 4*pi);
_yy

R _yd = [0 z b*z]’
A= B*R_yd

Typical output of the program:

>> pr7_ 44

Enter the signal-to-noise ratio in dB 10

Enter multipath gain .5

R yy R yd =
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14.0708 5.0029 0.0000 0
5.0029 14.0708 5.0029 10
0.0000 5.0029 14.0708 5

R _yy~-1 A=
0.0831 -0.0338 0.0120 -0.2781
-0.0338 0.0951 -0.0338 0.7821
0.0120 -0.0338 0.0831 0.0773

7.2 Computer Exercises

Computer Exercise 7.1

% ce7 1.m: Simulation BEP for antipodal signaling
%o
clf
n_sim = input(’Enter number of bits for simulation: ’);
zdB = input(’Enter z = A~2*T/N_ 0 vector in dB: ’);
z = 10.”(2zdB/10);
Lz = length(z);
A=1,;
T=1;
NO = (A"2*T)./z;
S = A*T*sign(rand(1,n_sim)-.5);

PE = [J;
ET = [J;
for k = 1:Lz
N = sqrt(0.5*NO(k)*T)*randn(1,n_sim);
Y = S+N;
Z = sign(Y);
V = 0.5%(142);
W = 0.5%(1+sign(S));
E = xor(V,W);

ET(k) = sum(E);
PE(k) = ET(k)/length(Y);

end

PEth = 0.5%erfc(sqrt(z));

disp(" )

disp(’ SNR, dB Errors P E est. P _E theory’)

disp(’ ")
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disp(* )

disp([zdB’ ET’ PE’ PEth])

disp(" )

semilogy(zdB, PE, ’0’), xlabel(’z in dB’), ylabel('’P_E’), grid

hold on

semilogy(zdB, PEth)

title(’BER simulated with ’, num2str(n_sim), ’ bits per SNR value ’])
legend([’Simulated’], ['Theoretical’])

A typical run is given below:

>>ce7 1

Enter number of bits for simulation: 20000

Enter z = A~2*T /N _0 vector in dB: [2 4 6 §]

SNR, dB Errors P _E est. P _E theory

2.0000 704.0000 0.0352 0.0375

4.0000 238.0000 0.0119 0.0125
6.0000 44.0000 0.0022 0.0024
8.0000 4.0000 0.0002 0.0002

A plot also appears showing the estimated and theoretical probabilities of error plotted
versus signal-to-noise ratio.

Computer Exercise 7.2
% ce7_2: Compute degradation in SNR due to bit timing error

%
clf
A = char(’-7)-)=);
form = 1:4
PEO = 10" (-m);
delT = [J;
deg = [J;
Ebl = [J;
k =0;
for Y = 0:.025:.45;
k = k+1;
delT(k) =Y;
Ebl(k) = fzero(QPEL, 2, [], delT(k), PEO);
end

Eb = fzero(QPE, 2, [], PE0);
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Degradation in SMR for bit synchronization timing error

20 T I T T T T T T
— F'E=1D'1 . . . . . .
18_ 2 -TT-Tr--- oo r--—--- T-~-~-~° T-~-~-~° T-~-~-~° ':'____ll_
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16 e O S ol
— =1p* /

Degradation in dB

D 1 1 1 1 : 1
0 0.05 01 015 02 025 o s 0.35 0.4 0.45
Fractional timing error, AT/T

Figure 7.10:
deg = Ebl - Eb;
plot(delT, deg, A(m,:)), ...
ifm==
hold on

axis([0 .45 0 20])

xlabel("Fractional timing error, \DeltaT/T’), ylabel(’Degradation in dB’),...
title(['Degradation in SNR for bit synchronization timing error’]), grid
end

end
legend([P_E =10"-"1"], [ =10~-"2’], [ = 10~-"3], [ = 10~-"4’], 2)

The output plot is shown in Fig. 7.1.

Computer Exercise 7.3

A MATLAB program for this computer exercise is given in the solution for Problem 7.17.
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Computer Exercise 7.4

% ce7_4: For a given data rate and error probability, find the required
% bandwidth and Eb/NO in dB; baseband, BPSK/DPSK, coherent FSK
% and noncoherent FSK modulation may be specified.
%
I _mod = input(’Enter desired modulation: 0 = baseband; 1 = BPSK; 2 = DPSK;
3 = CFSK; 4 = NCFSK: );
I BW_R = input(’Enter 1 if bandwidth specified; 2 if data rate specified: ’);
ifl BW R==1
BkHz = input(’Enter vector of desired bandwidths in kHz: ’);
elseif | BW R == 2
Rkbps = input(’Enter vector of desired data rates in kbps: ’);
end
PE = input("Enter desired BEP: ’);
NO = 1;
ifI. BW R ==
itI mod ==
Rkpbs = BkHz; % Rate for baseband
elseif | mod ==1|1 mod == 2
Rkbps = BkHz/2; % Rate in kbps for BPSK or DPSK
elseif I mod == 3
Rkbps = BkHz/3; % Rate in kbps for CFSK
elseif I mod ==
Rkbps = BkHz/4; % Rate in kbps for NFSK

end
elseif | BW R == 2
if I mod ==
BkHz = Rkbps; % Transmission BW for baseband in kHz

elseif | mod ==1|1 mod ==
BkHz = 2*Rkbps; % Transmission BW for BPSK or DPSK in kHz
elseif I mod ==
BkHz = 3*Rkbps; % Transmission BW for CFSK in kHz
elseif I mod == 4
BkHz = 4*Rkbps; % Transmission BW for NFSK in kHz
end
end
R = Rkbps*1000;
B = BkHz*1000;
% PE = 0.5%erfc(sqrt(z)) MATLAB has an inverse erf but not an inverse Q-function

37
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if I mod==0|1 mod==1
sqrt_z = erfinv(1-2*PE);
z =sqrt z"2;
elseif I mod ==
z = -log(2*PE);
elseif I mod == 3
sqrt_z over 2 = erfinv(1-2*PE);
z = 2%sqrt_z over 272;
elseif I mod ==
z = -2*log(2*PE);
end
Eb NO_ dB = 10*logl0(z); % This is the required Eb/NO in dB
ifI mod ==0
A = sqrt(R*NO*z); % z = A~2/(R*NO) for baseband
elseif | mod ==1|1 mod ==2|1 mod ==3|1 mod ==4
A = sqrt(2*R*N0O*z); % z = A~2/2*R*N0 for BPSK, DPSK, CFSK, NFSK
end
disp(* ")
disp('Desired P E and required E_b/N_0in dB: ”)
format long
disp([PE Eb_NO_dB))
format short

disp(’ ")
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A typical run is given below:
>> ce7_4
Enter desired modulation: 0 = baseband; 1 = BPSK; 2 = DPSK;
3 = CFSK; 4 = NCFSK: 3
Enter 1 if bandwidth specified; 2 if data rate specified: 2
Enter vector of desired data rates in kbps: [5 10 20 50]
Enter desired BEP: 1e-3
Desired P E and required E_b/N 0 in dB:
0.00100000000000 9.79982256904398
R, kbps BW, Hz A, volts

5.0000 15.0000 309.0232
10.0000 30.0000 437.0248
20.0000 60.0000 618.0465

50.0000 150.0000 977.2173

Computer Exercise 7.5

% ce7_5.m: Simulation of suboptimum bandpass filter/delay-and-multiply
% demodulator with integrate-and-dump detection for DPSK; input bandpass
% filter is Butterworth with selectable bandwidth-bit period product.
% Simulation is broken up into contiguous blocks for memory management.
%
Eb NO dB max = input(’Enter maximum Eb/NO in dB: ’);
Eb_NO_ dB_ min = input(’Enter minimum Eb/NO in dB: ’);
samp_bit = input(’Enter number of samples per bit used in simulation: ’);
n_order = input(’Enter order of Butterworth detection filter: ’);
BWT bit = input(’Enter filter bandwidth normalized by bit rate: ’);
N _bits = input("Enter total number of bits in simulation: ’);
N _bits_block = input(’Enter number of bits/sim. block: ’);
N blocks = floor(N _bits/N _bits block);
T bit = 1; % Arbitrarily take bit time as 1 second

BW = BWT bit/T bit; % Compute filter bandwidth from BW*T bit
[num,den] = butter(n_order,2*BW /samp bit); % Obtain filter num/den coefficients
e tot = [|;

N_bits_sim = [|;

Eb N0 dB = % Ensure that plotting arrays are empty
Perror = [J;

clf % Clear any plots left over from previous runs

k = 0;
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for kk = Eb_NO dB_ min:Eb_NO dB_max % Loop for simul. det. for each Eb/NO
k = k+1;
Eb_NO_dB(k) = kk;
Eb _NO=10"(Eb_NO0_dB(k)/10); = % Convert desired Eb/N0 from dB to ratio

Eb = T bit; % Bit energy is T bit, if ampl. = 1

NO = Eb/Eb_ NO; % Compute noise PSD from Eb/NO

del t =T bit/samp bit; % Compute sampling interval

sigma_n = sqrt(N0/(2*del t)); % Compute std deviations of noise samples

e sum_tot = 0;
zi = [|;
nn = 1;
while nn <= N_blocks & e _sum_tot < 200
ss = sign(rand(1,N_bits block)-.5); % Generate sequence of random +-1s

data = 0.5%(ss+1); % Logical data is sequence of 1s and Os
data_diff enc = diff enc(data); % Differentially encode data for DPSK

s = 2*data_ diff enc-1; % Generate bipolar data for modulation
sig = [|;

sig = s(ones(samp _ bit,1),:); % Build array wth columns samp _bit long
sig = sig(:); % Convert matrix of bit samples to vector
bits_out = [[; % Make sure various arrays are empty
y_det = [J;

noise = sigma_ n*randn(size(sig)); % Form sequence of Gauss. noise samples
[y,zf] = filter(num,den,sig+noise,zi); % Filter S plus N with chosen filter

zi = zf; % Save final values for future init. cond’ns
y_ref = delayl(y,samp _bit); % Ref. signal is 1-bit delayed S + Ne
y_mult = y.*y ref; % Multiply rec’d S + N by 1 bit delay

bits _out = int_and dump(y_ mult,samp_bit,N bits block); % I-&-D det.
error_array = abs(bits _out-data); % Compare detected bits with input

if nn ==
error_array(1:10) = 0; % Don’t include 1st 5 bits due to transients
elseif nn =1
error_array(1:1) = 0; % Delete 1st bit due toy ref =0
end
e_sum = sum(error _array); % Sum to get total number of errors/blk

e_sum_tot = e_sum_tot + e_sum; % Running sum of total no. of errors
nn = nn + 1;

end

e_tot(k) = e sum_ tot;

N bits_sim(k) = (nn-1)*N_ bits_block-10-(nn-2);

Perror(k) = e _sum_tot/N_bits_sim(k);
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end % End of Eb/NO loop

disp(’ ")

disp(’ Eb/NO, dB; PE errors’) % Display computed prob. of error
disp(’ )

disp(’ ")

disp([Eb_NO_dB’ Perror’ e tot’])

disp(’ ")

% Plot simulated bit error probabilities versus Eb/NQ

semilogy(Eb_NO_dB, Perror,’-"), grid, xlabel’E_b/N _0; dB’), ylabel(’P_E’), hold

% Plot theoretical bit error probability for optimum DPSK detector

semilogy(Eb_NO_dB, 0.5%exp(-10.”(Eb_NO0_dB/10)))

% Plot approximate theoretical result for suboptimum detector

semilogy(Eb_NO_dB, gfn(sqrt(10.”(Eb_NO dB/10))),-.)

Title([’Comparison of optimum & delay-and-multiply detectors for DPSK; 7,
num2str(n_order), -order Butterworth filter; BT = ’, num2str(BWT bit)])

legend([’Simulation; BT = ’, num2str(BWT _bit),”; ’, num2str(N _bits),” bits; ’,
num2str(N _blocks), ’ blocks’],"Theory; optimum differential detector’,
"Theory; delay /multiply detector’, 3)

%diff _enc(input); function to differentially encode a bit stream vector
%o

function output = diff _enc(input)

L_in = length(input);

output = [J;

for k = 1:LL_in

ifk==1

output(k) = not(bitxor(input(k),1));

else

output(k) = not(bitxor(input(k),output(k-1)));
end

end

% int _and _dump(input,samp_bit,N bits);

%o

function bits _out = int _and dump(input,samp _bit,N bits)

% Reshape input vector with each bit occupying a column

samp _array = reshape(input, samp _bit, N _bits);

integrate = sum(samp _array); % Integrate (sum) each bit (column)
bits_out = (sign(integrate) + 1)/2;
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A typical run is given below. A minimum of 200 errors are counted unless the total number
of specified bits to be simulated is exceeded. A plot is also made comparing probabilities
of error for the optimum detector, simulated suboptimum detector, and approximate theo-
retical result for the suboptimum detector.

>>ce7_ 5

Enter maximum Eb/NO in dB: 7

Enter minimum Eb/NO in dB: 3

Enter number of samples per bit used in simulation: 5
Enter order of Butterworth detection filter: 2
Enter filter bandwidth normalized by bit rate: 1.5
Enter total number of bits in simulation: 15000
Enter number of bits/sim. block: 5000

Eb/NO, dB; PE errors

3.0000 0.1040 519.0000

4.0000 0.0655 327.0000

5.0000 0.0485 242.0000

6.0000 0.0216 216.0000

7.0000 0.0101 152.0000

Computer Exercise 7.6

% ce7_6: program to plot Figure 7-28
%
clf
z0dB = 0:1:30;
z0 = 10.”(z0dB/10);
for delta = -0.9:0.3:0.6;
if delta > -eps & delta < eps
delta = 0;
end
for taum over T = 0:1:1
T1 = 0.5*qfn(sqrt(2*z0)*(1+delta));
T2 = 0.5*qfn(sqrt(2*z0)*(1+delta)-2*delta*taum _over T);
PE =T1 + T2;
if taum_over T == 0
semilogy(z0dB, PE, *-")
elseif taum over T == 1
semilogy(z0dB, PE, =)
end
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Bit errar probability for two-ray multipath channel

— =0 |}
— ‘Lm!T=1 1

Figure 7.11:

if delta <= -.3
text(z0dB(10), PE(10), [\delta = ’, num2str(delta)])
elseif delta > -0.3 & delta <= 0.3
text(z0dB(8), PE(8), ['\delta = ’, num2str(delta)])
elseif delta > 0.3
text(z0dB(5), PE(5), [\delta = ’, num2str(delta)])
end
if delta == -0.9
hold on
ylabel('’P_E’), xlabel(’z_ 0 in dB’)
axis([0 30 1E-5 1])
grid
end
end
end
legend(["\tau m/T = 0’],['\tau_m/T = 1’])

The output plot is shown in Fig. 7.2.

Computer Exercise 7.7

Use Equations (7.73) (with m = 0), (7.87), (7.111), (7.119), and (7.174) - (7.177). Solve
them for the SNR in terms of the error probability. Express the SNR in dB and subtract
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the nonfading result from the fading result. The MATLAB program below does this for
the modulation cases of BPSK, coherent FSK (CFSK), DPSK, and noncoherent (NFSK).

% ce7 _7.m: Program to evaluate degradation due to flat
% Rayleigh fading for various modulation schemes
%
mod_type = input(’Enter type of modulation: 1 = BPSK; 2 = CFSK; 3 = DPSK; 4 =
NFSK: );
PE = input("Enter vector of desired probabilities of error: ’);
disp(" )
if mod type ==
disp(” BPSK’)
Z bar = (0.25*(1 - 2*PE).~2)./(PE - PE."2);
z = (erfinv(1 - 2*PE)).”2; % MATLAB has an inv. error function
elseif mod type == 2
disp(’ CFSK’)
Z bar = (0.5%(1 - 2*PE).~2)./(PE - PE."2);
z = 2¥(erfinv(1 - 2*PE)).~2;
elseif mod type == 3
disp(’ DPSK?)
Z bar = 1./(2*PE) -1;
z = -log(2*PE);
elseif mod type == 4
disp(” NFSK’)
Z bar = 1./PE -2;
z = -2*log(2*PE);
end
Z bar dB = 10*logl0(Z _bar);
z_dB = 10*logl0(z);
deg dB=7 bar dB-z dB;
isp(" )
disp(’ P_E Degradation, dB’)
disp(C__ ")
disp(’ ")
disp([PE’ deg_dB’))
disp(’ ")
A typical run is given below:

>>ce7 7
Enter type of modulation: 1 = BPSK; 2 = CFSK; 3 = DPSK; 4 = NFSK: 4
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Enter vector of desired probabilities of error: [le-2 5e-3 le-3 He-4 le-4]
NFSK
P E Degradation, dB
0.0100 10.9779
0.0050 13.3239
0.0010 19.0469
0.0005 21.6023
0.0001 27.6859

Computer Exercise 7.8

The solution to this exercise consists of two MATLAB programs, one for the zero-forcing
case and one for the MMSE case.

% ce7_8a.m: Plots unequalized and equalized sample values for ZF equalizer
%o
clf
pc = input("Enter sample values for channel pulse response (odd #): ’);
L_pc = length(pc);
disp("Maximum number of zeros each side of decision sample: ’);
disp((L_pc-1)/4)
N = input("Enter number of zeros each side of decision sample desired: ’);
mid_samp = fix(L_pc/2)+1;
Pe = J;
for m = 1:2*N+1

row = [J;

for n = 2-m:2*N+2-m

row = [row pc(mid samp-1+n)];

end

Pc(:,m) = row’;
end
disp(
disp(
disp(
disp(Pc)
Pc_inv = inv(Pc);

(

(

(

(

9

)
7 C’)
')

)

dlSp )
disp(’Inverse of Pc:’)
disp(’ )

disp(Pc_inv)
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coef = Pc_inv(:,N+1);

steps = (L_ pc-length(coef))+1

p_eq = [|;

for m = mid _samp-floor(steps/2):mid _samp+floor(steps/2)
p_eq(m) = sum(coef’. *fliplr(pc(m-N:m+N)));

end

p_eq p =rp_ eq(N+1:mid samp-+floor(steps/2));

disp(’ ")

disp("Equalized pulse train’)

disp(’ )

disp(p_eq_p)

disp(’ )

t=-5:.01:5;

y=zeros(size(t));

subplot(2,1,1),stem(pc),ylabel(’Ch. output pulse’),...

axis([1 L pc-.5 1.5]),...

title([’Ch. pulse samp. = [, num2str(pc),’]’])

subplot(2,1,2),stem(p_eq_p),xlabel('n’),ylabel("Equal. output pulse’),...

axis([1 L pc-.5 1.5]),...

title(["Output equalized with ’,num2str(N),” zero samples either side’])

)

A typical run is given below:

>> ce7_ 8a

Enter sample values for channel pulse response (odd #):
[-.05.1-.15.25-31-2.15-.1 .05 -.02]

Maximum number of zeros each side of decision sample:

2.5000

Enter number of zeros each side of decision sample desired: 2

Pc:

1.0000 -0.3000 0.2500 -0.1500 0.1000

-0.2000 1.0000 -0.3000 0.2500 -0.1500

0.1500 - 0.2000 1.0000 -0.3000 0.2500

-0.1000 0.1500 - 0.2000 1.0000 -0.3000

0.0500 - 0.1000 0.1500 -0.2000 1.0000

Inverse of Pc:
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samp. = [0.05 0.1 -0.15 0.25 0.3 1 0.2 0.15
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Figure 7.12:

1.0877 0.2842 -0.1777 0.0366 -0.0107
0.1686 1.1317 0.2572 -0.1731 0.0366
-0.1095 0.1403 1.1476 0.2572 -0.1777
0.0588 -0.0956 0.1403 1.1317 0.2842
-0.0093 0.0588 -0.1095 0.1686 1.0877
Equalizer coefficients:

-0.1777

0.2572

1.1476

0.1403

-0.1095

Equalized pulse train

-0.0350 -0.0000 -0.0000 1.0000 0.0000 0

The MATLAB program for the MMSE case is given below:

% Solution for ce 7.8(b)

%

z_dB = input(’Enter the signal-to-noise ratio in dB: ’);
z = 10" (z_dB/10);

b = input(’Enter multipath gain: ’);

-0.0554

47
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R_yy(1,1)=(14+b"2)*z+pi/2;
R_yy(2,2)=R_yy(1,1);
R_yy(3,3)=R_yy(1,1);
R_yy(1,2)=b*z+(pi/2)*exp(-2¥pi);
R_yy(1,3)=(pi/2)*exp(-4*pi);
R_yy(3,1)=R_yy(1,3);
R_yy(2,1)=R_yy(1,2);
R_yy(2,3)=R_yy(1,2);
R_yy(3,2)=R_yy(1,2);
disp(’ ")
disp('R_yy?’)
disp(’ )
disp(R_yy)
B = inv(R_yy);
disp(’ )
disp('R_yy~-12")
disp(" )
disp(B)
R yd = [0 z b*z];
disp(’ )
disp('R_yd:")
disp(* )
disp(R_yd)
A =B*R_yd,;
disp(’ ")
disp(’Optimum coefficients:’)
disp(A)
disp(* )

A typical run is given below:

>> ce7_8b

Enter the signal-to-noise ratio in dB: 7
Enter multipath gain: .6

R yy:

8.3869 3.0101 0.0000

3.0101 8.3869 3.0101

0.0000 3.0101 8.3869

R yy~-1:

0.1399 -0.0576 0.0207

-0.0576 0.1606 -0.0576
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0.0207 -0.0576 0.1399
R_yd:

0

5.0119

3.0071

Optimum coefficients:

-0.2267

0.6316

0.1319

49



Chapter 8

Advanced Data Communications
Topics

8.1 Problem Solutions

Problem 8.1
Use the relationship

Ry = (logy M) Rs bps

where Ry is the data rate, R is the symbol rate, and M is the number of possible signals
per signaling interval. In this case, R; = 2000 symbols per second. For M = 4, Ry =
2 x 2,000 = 4,000 bps, for M =8, R, = 6,000 bps, and for M = 64, Ry = 12,000 bps.

Problem 8.2
(a) 5,000 symbols per second. (b) Recall that

y (t) = Aldy () cos (wet) + da (t) sin (wet)] = V2A cos [wet — 0; ()], 0; (t) = tan™! [dQ (t)}

dy (t)

Alternating every other bit given in the problem statement between d; (¢) and da (t) gives
di(t)y =1, 1,-1, 1, 1,—-1, 1,—1 and d(¢) = 1,—1,—1,—1,—1, 1,—1 which results in
0; (t) =7/4, Tr/4, b /4, Trw/4, Tn/4, 3n/4, Tw/4, ---. For QPSK the symbol switching
points occur each Ts seconds. (c) Now the switching instants are each T} seconds. Start
with d; (t) = 1. Then ds (t) is staggered, or offset, by 1 bit time. So the first phase shift
is for dy (t) = 1 and da (t) = 1 or 05 (t) = w/4. After Ts = 2T} seconds d; (t) takes on the
second 1-value, but dg (¢) is still 1, so 01 (t) = w/4. At 3T} seconds, da (t) changes to —1,
50 02 (t) = Tm/4. At 4Ty seconds, d; (t) changes to —1, so 02 (t) = Tm/4, etc.

1
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Problem 8.3
For QPSK,

PE7 symbol = 2Q (\/ ES/N()) = 10_5

Trial and error using the asymptotic approximation for the Q-function gives [E; /Ng]req, q~
12.9 dB = 19.5. If the quadrature-carrier amplitudes are A, then the amplitude of the

envelope-phase-modulated form of the carrier is v/2A4, and Es/Ny = (\/§A)2T/ (2Ng) =
AWMR.Hmw“&wwz%MRH%MMWH:\Km45ﬂ9®R214xm4VE.ﬂw

answers are as follows: (a) 0.0014 V; (b) 0.0031 V; (c) 0.0044 V; (d) 0.0099 V; (e) 0.014 V;
(f) 0.0442 V.

Problem 8.4
Take the expectation of the product after noting that the average values are 0 because

E[n (t)] = 0:
E[NIN,] = E
s Np

{Aﬂn@wm@wﬁﬁénn@an@JMt
Ts
)
— /T/ _57;_ ) cos (wet) sin (weA) dtdA
2
No
1

Ts
A)] cos (wet) sin (we) dtdA
T.

cos (wt) sin (wet) dt

/ sin (2w.t) dt =0

Problem 8.5
(a) Use

6 (1) = tan ™" [Z 8]

(i) If 0; (t) = 45°, dy (t) = 1 and da (t) = 1; (ii) If 6; (t) = 135°, d1 (t) = =1 and da () = 1
(iii) If 91( ) = —45° dy (t) = 1 and da (t) = —1; (iv) If 0; (t) = —135°; dy (t) = —1 and
dy (t) = —

(b) Error in detecting dy (t): (1) 0; (t) = 135°; (ii) 6; (t) = 45°; (iii) 0; (t) = —135°; (iv)
0; (t) = —45°.
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(c) Error in detecting da (¢); (i) 6; (t) = —45°; (ii) 0; (t) = —135°; (iii) 0; (t) = 45°; (iv)
0; (t) = 135°.

Problem 8.6

(a) Both are equivalent in terms of symbol error probabilities. (b) QPSK is 3 dB worse in
terms of symbol error probability for equal transmission bandwidths, but it handles twice
as many bits per second. (c) Choose QPSK over BPSK in terms of performance; however,
other factors might favor BPSK, such as simpler implementation.

Problem 8.7
The exact result is

Psymbol = 1- (1 - ‘PEl)2
= 2Pg, — P3,

The approximation is Fiymnol ~ 2Pg,, so the error term is

-l

Clearly, since the Q-function is monotonically decreasing with increasing Es/Np, the error
term becomes negligible compared with Pg, = @ (, / ﬁ—;) as Fs/No becomes larger.

2

Problem 8.8
For the data stream 11100 10111 00100 00011, the quadrature data streams are

dy (t) = 11-1-11-11-1-11
dy (t) = 1-1111-1-1-1-11

Each 1 above means a positive rectangular pulse T seconds in duration and each -1 above
means a negative rectangular pulse T seconds in duration. For QPSK, these pulse se-
quences are aligned and for OQPSK, the one corresponding to ds () is delayed by Ts/2 = Ty
seconds with respect to dj (t). Type I MSK corresponds to the OQPSK waveforms d; ()
and dy (t) multiplied by cosine and sine waveforms with periods of 27}, respectively, and
type II MSK corresponds to d; () and dg () multiplied by absolute-value cosine and sine
waveforms with periods of T, respectively (one half cosine or sine per Ty pulse).
Waveforms for QPSK, OQPSK, and Type II MSK generated by a MATLAB program are
shown in Figures 8.1 - 8.3 for a random (coin toss) serial bit sequence.



serial data

inphase data  quad. data

rnod. carrier

inphase data  quad. data

mod. carrier

serial data
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e

Waveforms for QPSK signaling

1 1 1 1 1 1 1
10 15 20 25 30 35 40

1
45

50

ju

UL

1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 a0

1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 a0
1 1 1 1 1 1 1 1 ]
] 10 14 20 25 30 35 40 45 a0
t
Figure 8.1:
Waveforms for DQFSK signaling

1
25 30 35

Figure 8.2:
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Waveforms for MSK signaling

serial data
o
—
1 1

quad. data
e
§

inphase data
e
§

rnod. carrier
[}

Figure 8.3:

Problem 8.9
For QPSK, the excess phase corresponds to a stepwise function that may change values
each T seconds. The phase deviation is given by

da (t)]
dy (t)

0; (t) = tan* [

so the sequence of phases for QPSK computed from d; (t) and ds (t) given in Problem 8.8
is w/4, —w/4, w/4, 37 /4, w/4, =37 /4, —7w /4, =37 /4, =37 /4, w/4 radians. For OQPSK,
the phase can change each Ty/2 = T} seconds because ds (t) is delayed by T,/2 seconds
with respect to dj (t). The maximum phase change is £7/2 radians. For MSK, the excess
phase trajectories are straight lines of slopes +m/2T}, radians/second.

Problem 8.10
Write the sinc-functions as sin(x) /x functions. Use appropriate trigonometric identities to
reduce the product of the sinc-functions to the given form.

Problem 8.11
If d (t) is a sequence of alternating 1s and 0s, the instantaneous frequency is 1/47; Hz above
the carrier (with the definition of ; (¢) given by (8.17) and (8.18)). If it is a sequence of
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1s or 0s, the instantaneous frequency is 1/4T; Hz below the carrier. (a) The instantaneous
frequency is 5,000,000 + 100,000/4 = 1,025,000 Hz. (b) The instantaneous frequency is
5,000, 000 — 100,000/4 = 975,000 Hz.

Problem 8.12

The signal points lie on a circle of radius /Fj centered at the origin equally spaced at
angular intervals of 22.5 degrees (360/16). The decision regions are pie wedges centered
over each signal point.

Problem 8.13
The bounds on symbol error probability are given by

Py < Pg, symbol < 2P

P=0Q [1 /% sin (w/M)]

For moderate signal-to-noise ratios and M > 8, the actual error probability is very close to
the upper bound. Assuming Gray encoding, the bit error probability is given in terms of
symbol error probability as

where

PE, symbol

P i ~
B0 g, (M)

and the energy per bit-to-noise spectral density ratio is

B 1 E
No  logy (M) No

L 0 @sinﬂ =107°
o [\/21 g2 (M) 5t sin /M)] 10

1.5x107°, M =38

Ey . 1075 2x 1075, M =16
Q [ 2log, (M) Fosm (W/M)] =5 = log, (M) = 2.5 x 1075, M = 32

3x1075 M =64

Thus, we solve

or
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The argument of the Q-function to give these various probabilities are found, approximately,
by trial and error (either using MATLAB and a program for the Q-function or a calculator

and the asymptotic expansion of the Q-function):

4.17, M =8

. 41, M =16
Q-function argument = 4.06, M = 32
4.02, M =64

Thus, for M = 8, we have

E
2log, (8) Fb sin (7/8) = 4.17
0
Ey
(J6=2 x 0.3827 = 4.1
6 * 03827 7

Ey
No

For M = 16, we have

E
2log, (16) == sin (7/16)

1/ 417 \?

= 4.1
No
E,
8— x 0.1951 = 4.17
VonN, ~
B 417

For M = 32, we have

E
2log, (32) Fi)) sin (7/32)

[ ~Ep
10— .
ONO x 0.098
Ey

No

1 2

4.06

4.06

1 [ 4.06\?2
101og;, [E (Wiﬁs) ] —22.35 dB
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For M = 64, we have

E
2log, (64) FZ sin (7/64) = 4.02

[0 Eb
12— 049 = 4.02
NOXOOQ 0

E 1 /4.02)\°
= 10log [ﬁ (Wig) ] —27.49 dB

Problem 8.14
The binary number representation for the decimal digits 0 — 15 and their Gray code equiv-
alents are given below:
|| Bin. No. | Gray | Bin. No. | Gray | Bin. No. | Gray | Bin. No. | Gray ||

0000 0000 0100 0110 1000 1100 1100 1010
0001 0001 0101 0111 1001 1101 1101 1011
0010 0011 0110 0101 1010 1111 1110 1001
0011 0010 0111 0100 1011 1110 1111 1000

Problem 8.15
Let the coordinates of the received data vector, given signal labeled 1111 was sent, be

(X, Y) = (a—l—Nl, Q+N2)

where N7 and Ny are zero-mean, uncorrelated Gaussian random variables with variances
No/2. Since they are uncorrelated, they are also independent. Thus,

P(C|I) = POSX<2)P(0<Y < 2a)
e~ (y—a)

2a 6—(x—a)2/N0 2a ,—( 2/No
- / R T N —
0 ’7TNO 0 7I‘N0
Let
_V@—a) . VEy—a)
u = and u =
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This results in

VAL

il

Similar derivations can be carried out for the type II and III regions.

Problem 8.16
The symbol error probability expression is

P—1- %P(C!I)JF%P(C]II)+%P(C!HI)]

where
2a2
P = =204, A= /5
P = [1-2Q(4)][1-Q(4)
P = [1-Q(A)
Thus

Py — 1—{iu—zmm]ﬂéu—w(m][1—Q<A>]+§[1—Q<A>F}

1

_ 1_{%[1_4Q(A)+4Q2(A)] 5 [1-3Q(4) + 20 (4)] + 5

1 [1-204)+ (A)}}

~ 1—-{1+3Q(A)}, neglecting all terms in Q? (A)
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Problem 8.17
This follows by counting type I, II, and III regions. There are v M x v M total regions,

four of which are type III regions (the corner regions), 4 (\/M — 2) type II regions, and

2
<\/M - 2) type I regions. A sketch will help in determining this. Thus, the given
expression for Pg follows. The expression for a follows by computing the average symbol
energy in terms of a. To accomplish this, the sums
m m
1 1) (2 1

=1 2 i=1 6

are convenient. The approximate probability of error expression follows in a manner similar
to the derivation for M = 16 outlined in Problem 8.16.

Problem 8.18
Use
M Ey 1 B,

PE, bit = mPE, symbol and N, = wﬁo

A tight bound for the symbol error probability for coherent M-ary FSK is

E
PE7 symbol < MQ ( FZ)

Use the asymptotic expression for the Q-function and iteration on a calculator to get the
following results:

For M =8, Pg iy = 107 for E},/No = 7.5 dB;

For M = 16, Pg 1, = 107 for E,/Ny = 6.5 dB;

For M = 32, Pg it = 107 for E,/Ny = 5.9 dB;

For M = 64, Pg, 1y, = 1074 for E,/Ny = 5.3 dB.

Problem 8.19
Use the same relations as in Problem 8.18 for relating signal-to-noise ratio per bit and
symbol and for relating bit to symbol error probability, except now

M-1 k+1
M-1)\ (-1 k E,
Pg, symbol = 3 T exp (e
E, symbol k_1< k ) k+1 exp< k+1N0>

Use MATLAB to perform the sum. The following results are obtained:
For M =2, Pg i = 107* for E,/Ny = 12.3 dB;
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For M = 4, Pg i = 107* for E,/Ny = 9.6 dB;
For M =8, Pg pix = 1074 for E,/Ny = 8.2 dB.

Problem 8.20

This is a normal cartesian coordinate system with the signal points located on the ¢, and
¢, axes at \/E;. The decision regions are formed by the positive coordinate axes and the
45-degree bisector of the first quadrant angle.

Problem 8.21
The bandwidth efficiencies are given by

R ] 0.5logy (M), M-PSK and M-QAM
B logy(M) .o herent M -FSK

M+1 >

This gives the results given in the table below:

1.5 bps/Hz, M =8 6.67 kHz, M = 8
PSK: £ =¢ 2.0 bps/Hz, M =16 ; B={ 5.0kHz, M =16
2.5 bps/Hz, M = 32 4.0 kHz, M = 32

16-QAM: £ =2.0 bps/Hz, M = 16; B =5.0 kHz

0.33 bps/Hz, M =8 30.0 kHz, M =8
FSK: £ =1¢ 0.24 bps/Hz, M =16 ; B={ 42.6 kHz, M =16
0.15 bps/Hz, M = 32 66.0 kHz, M = 32

Problem 8.22

Use Figure 8.19 noting that the abscissa is normalized baseband bandwidth. RF band-
widthis twice as large. The 90% power containment bandwidth is defined by the ordinate
= -10 dB. (C) Bgo’ BPSK — 1.6/Tb = 1.6Rb; (b) Bgo, QPSK, OQPSK = O.S/Tb = O.SRb; (a)
Bgo, msk = 0.8/T, = 0.8Ry.

Problem 8.23

Use Figure 8.19 noting that the abscissa is normalized baseband bandwidth. RF bandwidth
is twice as great. The 99% power containment bandwidth is defined by the ordinate =
-20 dB. (a) ng7 BPSK — 14/Tb == 14Rb; (b) ng7 QPSK, OQPSK = 3.5/Tb = 3.5Rb; (C)
Bgg, msk = 1.23/T, = 1.23Ry.

Problem 8.24
The baseband power spectrum is

G (f) = 24T} [logy (M)] sinc® [logy (M) Ty f]
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where

A? = E,cos260; = Ezsin?6;
M , M .
1 2 -1 1 2 -1
= MZCOSQ [—ﬂ-(JZW )] zﬁz:sin2 [—W(JZW )]
=1 =1
The 10% power containment bandwidth is defined by (see Problem 8.22)

logy (M) Bgg, mpsk = 0.8/1, = 0.8Ry,

0.267Ry Hz, M =8
Bgo, mpsk = 0.8Rp/logy (M) = 0.25Ry Hz, M = 16
0.16Ry Hz, M =8

Problem 8.25
(a) For NRZ mark:

Sy (f) =Ty sinc? (fTy)

SNRZ, mark (f) = A%Ty, sinc? (fTy)

(b) For polar RZ:

R, — A%, m=0
0, m#0

Sr(f) = %sian <%>

ATy . T
Spolar RZ (f) = ) b smc2 <%>
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(c) Bipolar RZ:

(A)(A) 3+ (0)(0) 2 =4, m=0
Rov=19 (A)(A) 1)+ @A) A 1)+ (=A@ )+ (=) (=) 1)+ @ o (3) (3)
+(0) (A) (2) () + (=A4) (0) (2) (2) + (0) (=A4) (2) () + (0) (0) (3) (3) =0, m #

ATy, . T
Sbipolar RZ (f) == 3 b Slnc2 (%)

Problem 8.26
To show:

< it > ( t ) 4Ty cos (27T, f)

cos | — | I | — — 5

2T, 2Ty T™ 11— (4be)

Use the modulation theorem together with the Fourier transform of a rectangular pulse to
get

cos <27r_1€b> 11 <2LT1,> «—— Tysinc 2Ty (f — 1/4T;)] + Ty sinc [2T;, (f + 1/4Ty)]

Rewrite the RHS as

s [2ER o
Note that
sin 27Ty f + 7/2) = £ cos (27T} f)
Then
RHS = % [1 = inf 1 +11be] cos (215
ATy cos (27Thf)

T 1— (4T, f)
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Phase estimation error for various loops; L= 1.-’E||_TS =5

— PLL, 10% carrier power
- Costas loop

Sct - Data estimation |
2 _'I -
1581 B
1 L |
05+ " . B

o Hl I e CEE T P
1 2 = 4 & B 7 8 ) 10

Figure 8.4:

Problem 8.27
Apply (5.28).

Problem 8.28
This is a matter of MATLAB programming and plotting.

Problem 8.29
A plot is given in Figure 8.4.

Problem 8.30
The states are (read from top to bottom, column by column):

1111 0100 1011
0111 0010 0101
0011 1001 1010
0001 1100 1101
1000 0110 1110

The output sequence is the last digit in each 4-element word. The autocorrelation function
is a triangular pulse centered at the origin two units wide repeated every 15 units and a
horzontal line between the triangles at —1/15 units.
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Problem 8.31
The states are (read from top to bottom, column by column):

11111 00101 10100 01101
01111 10010 01010 00110
00111 01001 11010 00011
10011 00100 11101 10001
11001 00010 01110 11000
01100 00001 01110 11100
10110 10000 10111 11110
01011 01000 11011

The output sequence is the last digit in each 5-element word. The autocorrelation function
is a triangular pulse centered at the origin two units wide repeated every 31 units and a
horzontal line between the triangles at —1/31 units.

Problem 8.32

To find the aperiodic correlation function, we slide the sequence past itself and compute the
number of alike bits minus the number of unalike bits for the overlap (the sequence is not
periodically repeated). The result can be scaled by the length of the sequence if desired.
(a) -1, 0,-1,0,-1,0, 7, 0, -1, 0, -1, 0, -1 (the maximum absolute value correlation is 1 -
nonzero delay); (b) -1, 0, -1, 0, 3, 0, 1, -2, -1, -4, -1, 0, -1, 0, 15, . . . (the maximum
absolute value correlation is 4 - nonzero delay).

Problem 8.33

Note that the expectation of N is zero because n (t) has zero mean. Write the expectation
of the square of N, as an iterated integral. The expectation can be taken inside. Use the
fact that

B (t)n (V] = 526 (¢~ )

to reduce the double integral to a single integral. The integral of the resulting cosine

squared is T3,/2. The result for the variance (same as the mean square) is then found to be
NoTy.

Problem 8.34
The random variable to be considered is

Ty
Ny = / Ase(t) cos (Awt + 0 — ¢) dt
0
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where 0 — ¢ is assumed uniform in[0, 27). Clearly, the expectation of Ny is zero due to
this random phase. The variance is the same as the mean square, which is given by

T, Th
var (N;y) = FE {/0 /0 A3c(t) ¢ () cos (Awt + 0 — ¢) cos (AwA + 0 — ¢) dtd)\}
_ / o / P A2E [ (8) ¢ (0)] cos (Awt + 0 — 6) cos (Awh + 0 — &) didA
o Jo

LD 1
~ A /O /0 A= X) /T.] 5 cos[Aw (¢~ )] ded

T q A2T.T,,
— AT, Zdp = Srtetd
I /0 2 2

Problem 8.35
(a) The processing gain is
T, R
GP:TC:E or Rc:Gpr

For G), = 100 and a data rate of 1 Mbps, R. = 100 megachips per second; (b) Brr = 2R, =
200 MHz; (c) Use (8.99) to get the following:

Pr =5.03 x 1075 for a JSR of 5 dB;

Pr =8.34 x 1074 for a JSR of 10 dB;

Pr =1.42 x 1072 for a JSR of 15 dB;

Pr = 0.34 for a JSR of 30 dB.

Problem 8.36

The results are
Pr =5.72 x 1079 for a JSR of 5 dB;
Pr =1.09 x 107° for a JSR of 10 dB;
Pr =5.03 x 107° for a JSR of 15 dB;
Pr = 0.0895 for a JSR of 30 dB.

Problem 8.37
In the limit at SNR Ep/Ng — oo, the argument of the Q-function for Pp = @ (\/ SNR)

becomes

N
VSNR = % ~ 3.81 to give Py = 10~*
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Thus,

N
K = 3—2+1
(3.81)

= 53.7
Round this down to K = 53 users since the number of users must be an integer.

Problem 8.38
The result is

nT, T, 2—Py  2(1000) (107%) 2 0.9

_ — 1.22 second
21— Pra) P 2(1-10-3) 0.9 seconds

Tacq =

Problem 8.39
(a) Only the OBP case will be done. See the text for the bent-pipe case. Equation (8.121)
becomes

_ 1075 — Pu

Pi=—

For BPSK, the uplink and downlink probabilities of error are related to the uplink and

o[ ()5 (&)
o (2)] -3 ((R)))]

where these probabilities have been put in terms of the error function because MATLAB
includes an inverse error function. When these relations are inverted, these become

() = [erto-2

Typical values are given in the table below. The MATLAB program for computing them
is also given below along with a plot. Part (b) is just a matter of inputting the desired
p_overall in the program.

Pu

Pd
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OBP link pedormance for owerall F'E = 1e-005; BFSK modulation

13 T T T T
125
12
%_ 15
iﬂ 14
105
10
95 H H H H
g4 96 98 10 10.2 10.4
(EfMply. dB
Figure 8.5:
I po [ (E/No),.dB]  pa___ | (Ey/No)y, dB |
1079 12.5495 9.999 x 10 9.5879
3x 1077 12.3228 9.997 x 10°° 9.5880
7x 1079 12.0839 9.993 x 10~ 9.5882

43 x 1078 11.5639 9.957 x 10°° 9.5898
72x10°7 10.6497 9.280 x 10~ ° 9.6217

% Solution for Problem 8.39

%

p_overall = input(’Enter desired end-to-end probability of error ’)
pu = logspace(logl0(p overall)-4, logl0(p overall)+1e-20);

pd = (p_overall - pu)./(1 - 2*pu);

Eb NO u = 20*loglO(erfinv(1l - 2*pu));

Eb_NO_d = 20*logl0(erfinv(1 - 2*pd));

plot(Eb_NO_d, Eb_NO_u), xlabel(E_b/N_0)_d, dB’), ylabel((E_b/N_0)_d, dB’),...

grid, axis square
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Problem 8.40
(a) This is similar to the previous problem except that the error probability expresseion for

noncoherent FSK is
1 E,
P = — B —
BE= &P ( 2N0>

Solving for %, we have

Ey
— = —2In (2P,
Ny n (2Pg)
Thus,
10_6 — Pu
Pi = o
E
(ﬁ)u = —2In(2p,)
Ey
— = —2In(2
(%) 1 (204)

(b) For DPSK, the probability of error is
1 Ey
Prp = -
-t ()
Therefore, the equations describing the link are

106 — Pu
1 —2p,

(%) = ()

(%’;)d — —In(2p)

A MATLAB program for computing the performance curves for both parts (a) and (b) is
given below. Typical performance curves are also shown.

% Solution for Problem 8.40

%

mod_type = input("Enter 1 for NFSK; 2 for DPSK ’)

p_overall = input(’Enter desired end-to-end probability of error ’)
pu = logspace(logl0(p _overall)-6, log10(1.000001*p overall));
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OBF link performance for owverall F'E = 1e-006; MFSK modulation
17.5 T T T T T T

L e RS UEET SELEREELED
UBB| -{---F----bommeedemeodoe

- I

(E, M), 4B

T4 N S S N S S L I

18 : : : : : :
4 s 5 Es & 5E 7 5
(E, Mo}y, dB

Figure 8.6:

pd = (p_overall - pu)./(1 - 2*pu);
if mod type == 1
Eb NO_ u = 10*logl0(-2*log(2*pu));
Eb_ NO_ d = 10*logl0(-2*log(2*pd));
elseif mod type ==
Eb NO u = 10*logl0(-log(2*pu));
Eb NO_d = 10*logl0(-log(2*pd));
end
plot(Eb _NO d,Eb_NO u), xlabel’(E_b/N _0) d,dB’),ylabel’(E_b/N_0) d,dB’),..
grid, axis square
if mod type ==
title(OBP link performance for overall P_E =’ num2str(p_overall), ’; NFSK
modulation’))
elseif mod type == 2
title(OBP link performance for overall P E = ’) num2str(p_overall), ’; DPSK
modulation’])
end
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OBR link performance for overall F'E = 1e-006; DPSK modulation
145 T T T T T T

11 1.5 12 12.5 13 13.5 14 14.5

(E M), 4B
Figure 8.7:

Problem 8.41
For noncoherent FSK, the bit error probability, using (8.51) and (8.54), is

M2 E,\ M Ey
Pb—m@( 10g2(M)FO>~7Q< 10g2(M)F0>

So, the equations for the OBP link are
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OBF link performance for averall F'E = 1e-005; coherent 16-FSK modulation
-

B.5F

45

0 e TR e Tm Ts = B
(E, My, 1B

Figure 8.8:

A MATLAB program is given below and a plot for 16-FSK is also given in Fig. 8.8.

% Solution for Problem 8.41

%

p_overall = input(’Enter desired end-to-end probability of error ’)
M = input(’Enter the desired M ’)

pu = logspace(loglO(p _overall)-4, logl0(p_overall)+1e-20);

pd = (p_overall - pu)./(1 - 2*pu);

Eb NO u = 20*logl0((2/log2(M))*erfinv(1 - (4/M)*pu));

Eb NO_ d = 20*logl0((2/log2(M))*erfinv(1l - (4/M)*pd));
plot(Eb_NO d,Eb_NO_ u), xlabel’(E_b/N _0) d,dB’),ylabel’(E_b/N_0) d,dB’),...
grid, axis square

title((OBP link performance for overall P E =’ num2str(p overall), ’; coherent ’,
num?2str(M),

’-FSK modulation’])
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Problem 8.42
(a) The number of users per reuse pattern remain the same at 120. For 20 dB minimum
signal-to-interference ratio and a propagation power law of o = 3, we have

Deo
20 = 10(3) logy, < - - 1) — 7.7815
A

or
logg (1;:) - 1) = %07815 = 0.794
Deo _ 100794 4 1
da
— 943=+3N
or

The efficiency is

T T MHz
1
= G =3 voice circuits per base station per MHz
(b) For 14 dB minimum signal-to-interference ratio and a propagation power law of o = 3,
we have

DCO
14 = 10(3)logy, <— - 1) —7.7815

da
Do 144+ 7.7815
logyo <E - 1) = +T = 0.726
‘DCU — 100.726 + 1
da
= 6.32=vV3N

or
N=101332]=19 (i=2, j=3)
The efficiency is
120
[ 15')

MHz

My =

[Nl NerNep

= 1 voice circuits per base station per MHz
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8.2 Computer Exercises

Computer Exercise 8.1

% ce8 _1.m: BEPs for M-ary PSK in AWGN (uses upper bound for M > 4);

% coherent FSK (uses union bound); noncoherent FSK (exact)

%

clf

I _mod = input(’Enter type of mod: MPSK = 1; CMFSK = 2; NCMFSK = 3: ’);
if I mod ==1

z dB = 3:.1:30;
elseif | mod ==2|1 mod == 3
z_dB = 3:.1:15;
end
z = 10.”(z_dB/10);
for j = 1:6
M=2"j;
if | mod ==

A=2/log2(M);
kk=(sin(pi/M))"~2*log2(M);
elseif I mod ==
A=M/2;
kk=log2(M)/2;
elseif I mod ==
A=M/(2*(M-1));
kk = 1;
end
ifj==1& I mod == 1
Pb = .5%erfc(sqrt(z));
elseif (j >=2& 1 mod==1)|(j>=1&I1 mod == 2)
Pb = (A/2)*erfc(sqrt(kk*z));
elseif I mod ==
Pb = zeros(size(z));
for k = 1:M-1
B = (prod(1:(M-1))/(prod(1:k)*prod(1:(M-1-k))))*(-1) "~ (k+1)/(k+1);
alpha=k*log2(M)/(k+1);
Pb = Pb+A*B*exp(-alpha*z);
end
end
semilogy(z_dB,Pb)xlabel’E_b/N 0, dB’),ylabel("’P_b’),...
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axis([min(z_dB) max(z_dB) 10°(-6) 1]),...
if I mod ==1
titleCBEP for MPSK?)
itj <=2
text(z_dB(35)+.2, Ph(35), 'M = 2 & 4)
elseif j >= 3
text(z_dB(105)+.2, Pb(105), M =, num2str(M)])
end
elseif I mod == 2
title("BEP for coherent MFSK?”)
ifj<=3
text(z_dB(50)+.2, Pb(50), [M = ’, num2str(M)])
elseif j > 3
text(z_dB(25)+.2, Pb(25), [M =", num2str(M)])
end
elseif I mod == 3
title("BEP for noncoherent MFSK?”)
ifj<=3
text(z_dB(50)+.2, Pb(50), [M =, num2str(M)])
elseif j > 3
text(z_dB(25)+.2, Pb(25), [M =, num2str(M)])
end
end
if j==1
hold on
grid
end
end

A typical run follows, with the resulting plot shown in Fig. 8.9:

>>ce8_1
Enter type of modulation: MPSK = 1; coh. MFSK = 2; noncoh. MFSK = 3: 1

Computer Exercise 8.2

% ce8_2.m: Out-of-band power for M-ary PSK, QPSK (OQPSK), and MSK
%

clf

A = char(-’)-" -0 =0 0=,

Thbf = 0:.025:7;
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BEP for MP Sk

Figure 8.9:

LTbf = length(Tbf);
A BPSK = [[;
A_QPSK = [|;
A MSK = [|;
for k = 1:LTbf
A BPSK(k) = quadl(’G_BPSK’, Tbf(k), 14);
A QPSK(k) = quadl('G_ QPSK’, Thf(k), 7);
A MSK(k) = quadl('G_MSK’, Tbf(k), 7);
end
OBP_BPSK = 10*logl0(A_BPSK/A BPSK(1));
OBP _QPSK = 10*logl0(A QPSK/A QPSK(1));
OBP_MSK = 10*logl0(A_MSK/A MSK(1));
plot(Thf, OBP BPSK, A(1,:)), ylabel('Relative out-of-band power, dB’), xlabel("T _bf’),...
axis([0 5 -40 0]),grid,...
hold on
plot(Thf, OBP _QPSK, A(2,:))
plot(Thf, OBP MSK, A(3,:))
legend('BPSK’, "*QPSK/OQPSK’, "MSK’)

A typical plot generated by the program is shown in Fig. 8.10.
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Computer Exercise 8.3

% ce8 3.m: Computes spectrum of continuous phase FSK
%
clf
A = char(’-’)-")-0)00 )00 0=,
Tbf0 = input(’Enter f 0 times T b ’)
delThf0 = .5:.25:1.5;
L _delTbf = length(delTbhf0)
Thf = 0:.025:10;
for k = 1:L delTbf
delTbf = delTh{0(k);
G_FSK = (S_CFSK(Tbf-Tbf0) + S CFSK(Tb{-Tbf0-delTbf)).~2;
area = sum(G_ FSK)*0.025;
G_FSKN = G_FSK/area,;
plot(Thf, G_FSKN, A(k,:))
iftk==1
hold on
grid
xlabel("T _bf’), ylabel(’Spectral amplitude’)
end
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Spectrum for continuous phase FSK; T f, = 4
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Voo A, =125

Spectral amplitude

Figure 8.11:

end
legend(["\DeltafT b = ’"num2str(delTbf0(1))], ["\DeltafT b =’ num2str(delTb{0(2))],
\DeltafT b = ’,num2str(delTbf0(3))],[\DeltafT b =’ num2str(delTb{0(4))],
[\DeltafT b = ’num2str(delThf0(5))])
title([’Spectrum for continuous phase FSK; T bf 0 =, num2str(Thf0)])

% Function to approximate CFSK spectrum
%

function y = S CFSK(Tbf)

y = sinc(Thf);

A typical plot is shown in Fig. 8.11.

Computer Exercise 8.4

% ce8 4.m: Computes bit error probability curves for jamming in DSSS.

% For a desired P_E and given JSR and Gp, computes the required Eb/NO
%

clf

A = char(-)- -0 )0=0 - X0 -.07);

Gp_dB = input(’Enter desired processing gain in dB ’);
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Gp = 10" (Gp_dB/10);

z_dB = 0:.5:30;

z = 10.”(z_dB/10);
k=1,

JSRO = [|;

for JSR_dB = 5:5:25;
JSRO(k) = JSR_dB;
JSR = 10" (JSR_dB/10);
arg = z./(1+2z*JSR/Gp);
PE = 0.5%erfc(sqrt(arg));
semilogy(z_dB, PE, A(k+1,:))
ifk==1
hold on
axis([0 30 1E-15 1))
grid on
xlabelCE_b/N_0, dB?), ylabel(’P_E’)
title(BEP for DS BPSK in jamming for proc. gain =,
num2str(Gp_dB),” dB’])
end
k = k+1;
end
PEG = 0.5*qfn(sqrt(2*z));
semilogy(z_dB, PEG), text(z_dB(30)-5, PEG(30), 'No jamming’)
legend(['JSR = ’, num2str(JSRO(1))], [[JSR = ’, num2str(JSRO(2))],
JSR =, num2str(JSRO(3))], [JSR = ’, num2str(JSRO(4))],
JSR =, num2str(JSRO(5))], 3)
disp(’Strike ENTER to continue’);
pause
PEO = input(’Enter desired value of P_E ’);
JSR_dB 0 = input(’Enter given value of JSR in dB ’);
Gp_dB_ 0 = input(’Enter given value of processing gain in dB ’);
JSRO = 10" (JSR_dB_0/10);
Gp0 = 10~ (Gp_dB_0/10);
PELIM = 0.5%erfc(sqrt(Gp0/JSRO));
disp(’ ")
disp(’Infinite Eb/NO BEP limit’)
disp(PELIM)
if PELIM >= PEO
disp(’For given choices of G_p, JSR, & desired P_E,
a solution is not possible ’);
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Gp0_over JSRO = (erfinv(1-2*PE0))"2;
Gp0_over JSRO dB = 10*logl0(Gp0_over JSRO0);
disp("The minimum required value of G_p over JSR in dB is:’)
disp(Gp0_over JSRO dB)
else
argl = (erfinv(1-2*PE0))"~2;
SNRO = 1/(1/arg0 - JSRO/Gp0);
SNRO_dB = 10*logl0(SNRO);
end
disp(" )
disp("To give BEP of:")
disp(PEO)
disp('Requires GP, JSR, and Eb/NO in dB of®")
disp([Gp_dB JSR_dB SNRO_dB))

A typical run follows, with both a plot given in Fig. 8.12 and a specific output generated:

>> ce8_4

Enter desired processing gain in dB: 30
Strike ENTER to continue

Enter desired value of P E: 1e-3

Enter given value of JSR in dB: 20
Enter given value of processing gain in dB: 30
Infinite Eb/NO BEP limit

3.8721e-006

To give BEP of:

0.0010

Requires GP, JSR, and Eb/NO in dB of:
30.0000 25.0000 9.6085

Computer Exercise 8.5

% ce8 _5.m: Given a satellite altitude and desired spot diameter for

% illumination, determines circular antenna aperture diameter and

% maximum antenna gain.

%

h = input("Enter satellite altitude in km: ’);

d_spot = input('Enter desired illuminated spot diameter at subsatellite
point in km: ’);

f0 = input(’Enter carrier frequency in GHz: ’);

rho = input("Enter desired antenna efficiency: 0 < \rho <= 1: ’);
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BEF for DS BPSK in jamming for processing gain = 30 dB
10 T T T T T

S
ey, | |

Figure 8.12:

theta = d_spot/h;

phi3dB = theta;

lambda = 3E8/(f0*1E9);

d = lambda/(phi3dB*sqrt(rho));

% GO = rho*(pi*d/lambda)~2

GO = (pi/phi3dB)~2

GO_dB = 10*1og10(C0);

disp(" ")
disp(’3-dB beamwidth in degrees: ’)
disp(phi3dB*57.3)
disp("Wavelength in meters:’)
disp(lambda)

disp(’Antenna diameter in meters:”)
disp(d)

disp(’Antenna gain in dB:’)
disp(G0_ dB)
disp(" )

A typical run follows:
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>>ce8 5

Enter satellite altitude in km: 200

Enter desired illuminated spot diameter at subsatellite point in km: 20
Enter carrier frequency in GHz: 8

Enter desired antenna efficiency: 0 < rho <= 1: .7
3-dB beamwidth in degrees:

5.7300

Wavelength in meters:

0.0375

Antenna diameter in meters:

0.4482

Antenna gain in dB:

29.9430

Computer Exercise 8.6

% ce8 _6.m: Performance curves for bent-pipe relay and mod/demod relay
%
clf
A = char(—,-" -0,
I _mod = input(’Enter type of modulation: 1 = BPSK; 2 = coh. FSK; 3 = DPSK;
4 = noncoh. FSK ”);
PEO = input("Enter desired value of P__E ’);
for I type = 1:2
itI type ==
if | mod ==1
EbNOr = (erfinv(1 - 2*PE0))"2;
elseif I mod ==
EbNOr = 2*(erfinv(1 - 2*PE0))"~2;
elseif I mod ==
EbNOr = -log(2*PE0);
elseif I mod == 4
EbNOr = -2*log(2*PE0);
end
EbNOr dB = 10*log10(EbNOr)
EbNOu_dB = EbNOr_dB+.000001:.01:35;
EbNOu = 10.”(EbNOu_dB/10);
den = 1/EbNOr-1./EbNOu;
EbNOd = 1./den;
EbNOd dB = 10.*logl0(EbNO0d);
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elseif I type == 2
d1 = 1log10(0.00000001*PEO0);
d2 = 1og10(0.9999999*PE0);
pu = logspace(dl, d2, 5000);
pd = (PEO - pu)./(1 - 2*pu);
if | mod ==
EbNOu = (erfinv(1 - 2*pu)).”2;
EbNOd = (erfinv(1l - 2*pd))."2;
elseif I mod == 2
EbNOu = 2*(erfinv(1l - 2*pu)).”2;
EbNOd = 2*(erfinv(1 - 2*pd))."2;
elseif I mod == 3
EbNOu = -log(2*pu);
EbNOd = -log(2*pd);
elseif I mod ==
EbNOu = -2*log(2*pu);
EbNOd = -2*log(2*pd);
end
EbNOu_dB = 10*logl0(EbNOu);
EbNOd_dB = 10*logl0(EbNOd);
end
plot(EbNOd_ dB, EbNOu_dB,A(L_type,:)).
if I type ==
axis square, axis([5 30 5 30]), grid on,...
xlabel((E_b/N_0)_d, dB’), ylabel((E_b/N_0) u, dB)
hold on
end
end
legend(['Bent pipe’],['Demod /remod’],1)
if I mod ==
title([Uplink E_b/N 0 versus downlink E_b/N 0, both in dB,
to give P E =’ num2str(PE0),”; BPSK modulation’])
elseif I mod ==
title(['Uplink E_b/N 0 versus downlink E_b/N 0, both in dB,
to give P E =’ num2str(PEOQ),’; coh. FSK modulation’])
elseif I mod == 3
title([Uplink E_b/N 0 versus downlink E_b/N 0, both in dB,
to give P_E =’ num?2str(PE0),”; DPSK modulation’])
elseif I mod == 4
title([Uplink E_b/N 0 versus downlink E_b/N 0, both in dB,

33
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Uplink Eba'ND versus downlink EbeU, both in dB, to give F'E = (0.0017; coh. FSK modulation
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Figure 8.13:

to give P_E =’ num2str(PEOQ),’; noncoh. FSK modulation’])

A typical run follows:

>>ce8 6

Enter type of modulation: 1 = BPSK; 2 = coh. FSK; 3 = DPSK; 4 = noncoh. FSK 2
Enter desired value of P E 1e-3

EbNOr dB =

9.7998

Computer Exercise 8.7

% ce8 7.m: plots waveforms or spectra for gmsk and msk

%

A = char(’-’)-0)=:0);

samp_bit = input(’Enter number of samples per bit used in simulation: ’);
N _bits = input(’Enter total number of bits: ’);

GMSK = input("Enter 1 for GMSK; 0 for normal MSK: ’);

if GMSK ==

end

BT _bit = input(’Enter vector of bandwidth X bit periods: ’);
N samp = 50;
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I plot = input(’Enter 1 to plot waveforms; 2 to plot spectra and out-of-band power ’);
iftI plot ==1
f0 = 1;
elseif I plot ==
f0 = 0;
end
clf
kp = pi/2;
T bit = 1;
LB = length(BT _bit);
for k = 1:LB
B = BT bit(k)/T_bit;
alpha = 1.1774/B; % Note that B is two-sided bandwidth
del t =T bit/samp _bit;
fs = 1/del t;
data = 0.5%(sign(rand(1,N _bits)-.5)+1);
s = 2*data - 1;
L = length(s);
t=0:del t:L*T _bit-del t;
s_t = s(ones(samp_bit,1),:); % Build array whose columns are samp _bit long
s_t =s_t(:)’; % Convert matrix where bit samples occupy columns to vector
L s t = length(s_t);
tp=0:del t:N_samp*T bit-del t;
Lt = length(t);
L_tp=length(tp);
t_max = max(tp);
if GMSK ==
hG = (sqrt(pi)/alpha)*exp(-pi~2*(tp-t max/2).”2/alpha”2);
freql = kp*del t*conv(hG,s_t);
L hG = length(hG);
freq = freql(L_hG/2:length(freql)-L _hG/2);
elseif GMSK ==
freq = kp*s_t;
end
phase = del _t*cumsum(freq);
if GMSK == 0
y_mod = exp(j*2*pi*f0*t+j*phase);
elseif GMSK ==
y_mod = exp(j*2*pi*f0*t+j*phase);
end



CHAPTER 8. ADVANCED DATA COMMUNICATIONS TOPICS

if I plot ==1
subplot(3,1,1),plot(t,s t),axis([min(t), max(t), -1.2, 1.2]), ylabel(’Data’)
if GMSK == 0
titleCMSK waveforms’)
elseif GMSK == 1
title(GMSK for BT b =’ num2str(BT bit(k))])
end
subplot(3,1,2),plot(t,phase), ylabel("Excess phase, rad.’)
for nn = 1:11
ifnn ==1
hold on
end
subplot(3,1,2),plot(t,-nn*(pi/2)*ones(size(t)),’ m’)
subplot(3,1,2),plot(t,nn*(pi/2)*ones(size(t)),’ m’)
end
subplot(3,1,3),plot(t,real(y mod)), xlabel(’t’), ylabel("Modulated signal’)
elseif I plot ==

Z=PSD(real(y mod),2048,fs); % MATLAB supplied function
ZN = Z/max(Z);
ET = sum(ZN);

OBP = l-cumsum(ZN)/ET;
LZ = length(Z);
del FR = fs/2/LZ;
FR = [0:del FR:fs/2-del FR];
subplot(1,2,1),semilogy (FR,ZN,A(k,:)), axis([0 3 10" (-8) 1])
ifk==1

hold on

grid

ylabel("PSD, J/Hz’), xlabel’fT b i t’)

title("Power spectra and out-of-band power for GMSK”)
end
subplot(1,2,2),semilogy (FR,OBP,A(k,:)), axis([0 3 10~(-8) 1])
ifk ==

hold on

grid

ylabel("Fraction of out-of-band power’), xlabel('fT b i t’)
end
it LB ==

legend(BT b i t ="num2str(BT bit(1))],1)
elseif LB ==
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legend(BT b i t ='num2str(BT _bit(1))],
BT b i t="num2str(BT bit(2))],1)

elseif LB == 3
legend([BT b i t='num2str(BT bit(1))],
BT b i t="num2str(BT bit(2))],
BT b i t='num2str(BT bit(3))],1)
elseif LB == 4

legend(BT b i t ="num2str(BT _bit(1))],
BT b i t="num2str(BT bit(2))],
BT b i t="num2str(BT bit(3))],
BT b i t="num2str(BT bit(4))],1)
end
end
end

Two typical runs follow - one for plotting waveforms and one for plotting spectra.

>> ce8 7

Enter number of samples per bit used in simulation: 20

Enter total number of bits: 50

Enter 1 for GMSK; 0 for normal MSK: 1

Enter vector of bandwidth X bit periods: .5

Enter 1 to plot waveforms; 2 to plot spectra and out-of-band power: 1

>> ce8 7

Enter number of samples per bit used in simulation: 10

Enter total number of bits: 2000

Enter 1 for GMSK; 0 for normal MSK: 1

Enter vector of bandwidth X bit periods: [.5 1 1.5]

Enter 1 to plot waveforms; 2 to plot spectra and out-of-band power: 2
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GMEK for BT, = 0.5

Data

| |
10 15 20 25 30 35 400 45

Excess phase, rad.

|
10 15 20 25 30 35 40 45 a0

hodulated signal

Figure 8.14:



39

8.2. COMPUTER EXERCISES

1

e

o — —

o

{2 B E
=== [

|

1

! |

1

1

mmwrna nrrna e miirr e _____L.Ll.-Ll_u mnna
HHHF F —IHIHI4 4 = HH FI-1— HIHH .—-l.hlkln._-:..:._._l_ = = HitI+I-
mmwrna e miT muorrn 1 u
mmrn

A R TR Y

LS BT

I
1
1
1
I
[}
1
1
1
1
1

] C T AT n T 1
1ommn __\\_'"."___..__ T 1
Wi mi " " "__“."n_‘hn"]d_.l,_.i____ " TR "
e o1 1
miny TOOmminr w1 1
I W LT T 1
i - o= o = o o - o
= = = _ = = = = —_
Jamod pue-l0-1no 1o uoijael
R R R i
min muien 11
min muien 1
min muien 1
min muien muin
"""""" " mi """""""" " _E..n.._______" T
FiIt14 + —HIHEI-I— HIHH F F —IHI+1H 4 = HIH +1-1— ..__:J_.%“_E_.:._._l!:._nhﬂﬂnn
WL mim e mn TR w1 —wentT
P mnn o mrr T ey S 1
e muin RTIEE T 1
I ! : 1
I

- ..hl“.‘.rl______ mrern 1

= 4 by o wE by oy Ly o
[ O | [ ' ' O o [
e e o o e e e o e

Fower spectra and out-of-band power for GhSK

=HT O=d

it

My

Figure 8.15:



Chapter 9

Optimum Receivers and Signal
Space Concepts

9.1 Problems

Problem 9.1
a. Given Hy, Z = N, so
fz (2|H1) = f () [z=n = 10 %u (2)
Given Hy, Z = S+ N, where S and N are independent. Thus, the resulting pdf under

Hs is the convolution of the separate pdfs of S and N:

fz (z|Hy) = / fs(z=XN) fx (V) d\ = 20/ e Ze BN, A>0
—o0 0
which integrates to the result given in the problem statement.

b. The likelihood ratio is

A(Z):%:O.%(esz—l), Z>0

c. The threshold is
_ Poer—en) 1

~ Pi(cia—co) 3
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d. The likelihood ratio test becomes

Hy
0.25 (e*4 — 1)

Wl =

>
<
H,

This can be reduced to

> T/3) _ 406

e. The probability of detection is

Pp = / 2.5 (e7% — e '%) dz = 0.925
0.106

The probability of false alarm is
Pr = / 10e~1%%dz = 0.346
0.106
Therefore, the risk is

Risk = » (5)+ Z (5) (1 0.925) — i (5) (1 — 0.346) = 0.714

1
4
f. Consider the threshold set at . Then
Pr=¢19 =5 >0921
to give Pr < 1074, Also, from part (e),
Pp = 1.25¢7 %1 — 0.25¢ 0"
For values of n > 0.921, Pp is approximately equal to the first term of the above
expression. For this range of nPp is strictly decreasing with 7 , so the best value of

Pp occurs for n = 0.921 for Pr < 10~%. The resulting Pp is 0.198.

g. From part (f),
Pp =e¢ % and Pp = 1.25¢ 72" — 0.25¢ 10"
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Bl = —

Figure 9.1:

From part (d), the likelihood ratio test is

Ho
In (4 1
7> n(77+):7
< 8
H,y

A plot of Pp versus P as a function of 7 or v constitutes the operating characteristic
of the test. It is shown in Figure 9.1.

Problem 9.2

a. The likelihood ratio is

112

(& ™ _1p2_
A(Z) = 2_%Z2 Z\/;e 227121

€

Ver

b. The conditional pdfs under each hypothesis are plotted below. The decision regions
Ry and Ry are indicated in Figure 9.2 for n = 1.

Problem 9.3

Define A = (a1,a2,a3) and B = (b1, bz, b3). Define scalar multiplication by a(a1,a2a3) =
(aar, aasz,aaz) and vector addition by (ai,ag,az) +(b1,b2,b3) = (a1 + b1, az + ba, az + bs).
The properties listed under ” Structure of Signal Space” in the text then become:
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i = -

I
— :
" - By ey o \\. e R |
i “‘\3 [

-3 _I = B I i i

Figure 9.2:

1. 1A+ asB = (a1a1 + b1, aras + agbe, aiasg + Oégbg) 6R3;

2. « (A —+ B) =« (a1 + b17a2 —+ bg, as + bg)
= (aa; + aby,aa + aby, aasz + abs) = (aar, caz aag) + (aby,abs, abs)
= oA+ aBeR?;

3. a1 (aeA) = (a1azA) € R? (follows by writing out in component form);
4. 1e A= A (follows by writing out in component form);

5. The unique element 0 is (0,0,0) so that A+ 0 = A;

6. —A = (—aj,—as —a3) so that A+ (—A) =0.

Problem 9.4
Consider
T
(z,y) = lim x(t)y* (t)dt
T—o0 _T
Then
T T *
@)= i [y @i= | Jin [ c@r ©d| =@
T—oo J_T1 T—oo J_1
Also
T T

(ax,y) = lim az (t)y* (t)dt = a lim x(t)y* (t)dt = a(z,y)

T—oo J_T T—oo J_T
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and
T
(@+yz) = lm [ [z(t)+y@)]=() (¢)dt
—00 J_T
T T
= lim x(t) 2" (t)dt + lim y (t) 2" (t)dt
T—oo J_7 T—oo J_1
= (#,2)+(y,2)
Finally
T T
(x,z) = lim x(t)x* (t)dt = lim |z (t)|*dt > 0
T—oo J_T T—oo J_T

The scalar product for power signals is considered in the same manner.

Problem 9.5

a. This scalar product is

T 1
(11, 22) = Tlgréo i 2¢ 8t qt = 3

b. Use the energy signal scalar product definition as in (a):

T
: 1
= 1 —GAt gy = ——
(w1, 2) = Jim J e 5+
c¢. Use the power signal product definition:
1 T
(x1,x0) = Tlim oT cos (27t) sin? (2nt) dt = 0
—00 -
d. Use the power signal scalar product definition:
1 T
T1,T9) = lim — cos (2nt)dt =0
T 2
— 00 0
Problem 9.6
Since the signals are assumed real,
2 4 2
|z1 + 22 = lim [ () + @2 (¥)]" dt
T—oo J_1
T T T
= lim x2 (t)dt +2 lim x1 (t) 2o (t)dt + lim
T—oo J_T T—o00 J_T T—o00 J_T

211 + 2 (21, 22) + [|22]*

x3dt
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From this it is seen that
21 + 22))® = |21 + |22

if and only if (x1,z9) = 0.

Problem 9.7
By straight forward integration, it follows that
|21 = 2 or [l = V2
ool = sl = 1/ 2
T = = or Tall =1/ =
2 3 2 3
8 8
s]|* = 3 o 3|l = 3

Also
(x1,22) =0 and (z3,21) =2
Since (z1,x2) = 0, they are orthogonal. Choose them as basis functions (not normalized).

Clearly, x3 is their vector sum.

Problem 9.8

It follows that
N N

lz1]® = lanl* and fl2]* = [bal®

n=1 n=1
Also
N
(x1,22) = Zanb:‘l
n=1
The inequality can be reduced to

Z Z ‘anbm - ambn‘2 Z O

which is true because each term in the sum is nonnegative.

Problem 9.9
a. A set of normalized basis functions is
1
t) = —s1(t
¢1 ( ) \/5 1 ( )
2 1
620 = \3[m0-300)

65() = VB |n(t) =35 (0= 3000
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b. Evaluate (s1,¢;), (S2,¢1), and (s3,¢;) to get

s1=V2¢y; 59 = ¢1 \/7%; s3=V2¢; + \/7 (¢2 + ¢3)

Note that a basis function set could have been obtained by inspection. For example,
three unit-height, unit-width, nonoverlapping pulses spanning the interval could have

been used.

Problem 9.10
A basis set is

¢1(t) = Ks1(t) and ¢, (1) = K2 (t)
where

_ ] fe
K= N A2

A signal point lies on each coordinate axis at £1/K.

Problem 9.11
First we set

v1(t) = z1(t) = exp(—t)u(t)
By definition

o0
a2 = e |2 = / exp(—2t)dt =
0
Thus

[or]] =

Sl

This leads to the first basis function
= V2exp(—t)u(t)

For the second basis function we compute <1

v2(t) = x2(t) — (w2, 01) 1 (2)

where

(22, 6,) = /0  VZexp(—t) exp(—20)dt = V2 /0 "~ exp(—3t)dt —

Thus

[\)

va(t) = exp(—2t)u(t) — g\/iexp(—t)u(t) = [exp(—?t) - gexp(—t) u(t)
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Next we compute

o) = /Ooo <exp(—4t) - %exp(—i’)t) + gexp(—%)) dt = %
This gives
Po(t) = [6exp(—2t) — dexp(—1)] u(t)
We next consider
v3(t) = w3(t) — (23, P2)Pa(t) — (w3, ¢1) 1 (2)

Using the same procedure as previously used

(x3,09) = /oo exp(—3t) [6 exp(—2t) — dexp(—t)] dt = %
0
so that ¢ )
(23, P2)Po(t) = = exp(—2t) — = exp(—t)
Also
(23,01) = / exp(—3t)v/2 exp(—t)dt = ?
0
so that

(29,6106 (8) = 5 exp(—1)

For t > 0 we then have

v3(t) = exp(—3t) — gexp(—%) + % exp(—t)

This leads to
ls|| = 220
37600

and

6y(t) =/ o0 [exp<—3t> % exp(-21) + = exp(—1)| ult)

Problem 9.12
First we set

By definition

1

2

Joul? = o = | 2t =3
—1
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Thus the first basis function is

For the next basis function we set

va(t) = wa(t) — (w2, 1)1 (1)

(z9, 1) = /_11 t2 (\/§t> dt =0

since the intergrand is odd and the limits are even. Thus

1
2
2 4
feal? = [ ttae= 2

t2 5 5
t)=——=4/=t
¢2() HUQH 9

where

from which

For the third basis function we write

vs(t) = w3(t) — (23, $2)ha(t) — (w3, P1)¢1 (%)

where
! 5
(ms,qﬁg):/ t3 (\/th> dt =0
-1 2
and
1
3 32
= 3ot |dt=4/==
(@)= [ (ﬁ) /2
so that
32 /3 3
t)y=t3— /=2t =13 - =t
v3(t) \/;5\/; 5
This gives
1
6 9 8
2 2 4 2
= 22—t | dt = —
s /_1[ 5 +25} 175
and
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For the next basis function we write

va(t) = 24(t) = (2, $3)P3(t) — (24, $2)P2(t) — (24, 61) 1 (1)

va(t) = wa(t) — (24, P2)Pa(?)

since (x4, ¢3) and (x4, ¢;) are zero. By definition

(T4, 09) = /11 tt (\/gﬁ) dt = \/g%

so that
52 /5 5
ty=tt— /=222 =t - 2
val?) \[2 7ﬁ 7
This gives
1
10 25 8
2 8 6 4
= 88— 04 Tt dt = —
sl /_1 [ T } 141
and

G4(t) =

w(t)  [441 [t4 - 5#}
[[val 8

8 7
Problem 9.13

a. A suitable basis is
2
P (t) = T 008 (27 fet) and ¢y (1)
[2 .
= 7 sin (2 fet) for 0 <t <T
The coordinates of the signal vectors are

T; = /OT si (t) ¢y (¢) dt = VE cos <%> = VE cos

and

T .
Y, = / si (t) ¢y (t) dt = —/Esin <%) = —VEsin,
0
where E = A>T/2 and 1p; = 2%, Thus

si (1) = VE cos(¥,); (t) — VEsin(¢;)¢ (), i =1,2,3,4
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b. The optimum partitioning of the signal space is a pie-wedge centered on each signal
point with the origin as the vertex and having angle 27 /M.

c. The optimum receiver consists of two parallel branches which correlate the incoming
signal plus noise with ¢; (t) and ¢4 (t). The correlator outputs are sampled at the
end of each signaling interval. Call these samples = and y. The angle tan~! (x/y) is
formed to determine which pie-wedge decision region the received data vector is in.

d. Defining z;(t) = s;(t) + n(t) gives
zi(t) = (VEcos(;) + N1)¢y () + (—VEsin(y;) + Na)oy (1), i=1,2,3,4
The probability of error can then be written in the form

Plerror|s; (t)] = 1—Prf correct recept.|s; (t)]

- [

exp {—Ni ((m — VE cos zpi)Q + (y + \/Esin(i/zi)y)} ddy

0

where R; is the region for a correct decision given that s;(t) is transmitted. (Note
that the noise variance is Ny/2). The expression for the probability of error can be
changed to polar coordinates by letting

x =1r+y/Ngcosf and y = r/Ngsinf

With this transformation
dxdy — Nordrdf

This gives

Plerror |s; ()] = 1——//
o0 [~ (023) =2 ENacos(o 4 + 5)| aras

where R; now represents the decision region for a correct decision in the R, 6 plane.
Since all decision regions have equal area and the noise has circular symmetry, the
error probability is independent of the transmitted signal. Thus, let ¢ = M so that
¥; = 21 and cos(0+1);) = cos 6. Since the error probability is independent of the signal
chosen, the conditional symbol error probability is equal to the unconditional error
probability for the case in which all signals are transmitted with equal probability.
Therefore

Plerror] =1 — = /ﬂ/M /00 rexp [— (r2 — 2r\/E /Ny cos(0) + E/No)] drdf

w/M JO
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e. This was done in Chapter 8.

Problem 9.14
Write

00 efy2 y++/E/No 67:1:2
Sl Vo

and let z = x —y. This gives

P VE/No =227 roo o=2(y+2/2)°
S N

Complete the square in the exponent of the inside integral and use a table of definite
integrals to show that is evaluates to (1/ 2)1/ 2. The result then reduces to

P.=1-Q(VE/N)

which gives P, = Q [(E/No)l/ﬂ, the desired result.

dydz

Problem 9.15

a. The space is three-dimensional with signal points at the eight points (j:\/E /3),
(i\/E / 3), (i\/E / 3). The optimum partitions are planes determined by the coor-

dinate axes taken two at a time (three planes). Thus the optimum decision regions
are the eight quadrants of the signal space.

b. Consider S;. Given the partitioning discussed in part (a), we make a correct decision

only if

IV =87 < |Y - Sol®
and

IY = S1)* < || — Saf®
and

Iy = S1* <[]y — Ss]*

where S, S4, and Sg are the nearest-neighbor signal points to S;. These are the
most probable errors. Substituting Y = (y1,y2,y3) and S; = (1,1,1), Se (1,—1,1,),
S4(—1,1,1), and Sg = (1,1, —1), the above conditions become

(1 +1)* < (1 —1)%, (g2 +1)° < (g2 — 1)*, and (y3 +1)* < (y3 — 1)
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by canceling like terms on each side. For Sy, these reduce to
y1 > 0,92 >0, and y3 >0

to define the
decision region for S7. Therefore, the probability of correct decision is

P [correct dec.|sy (£)] = Pr(y1 > 0, y2 > 0, y3 > 0) = [Pr(y; > 0)]*

because the noises along each coordinate axis are independent. Note that E[y;] =
(E/ 3)1/ 2 all i. The noise variances, and therefore the variances of the y;’s are all Ny.

Thus

P [correct dec.|sy ()] = [ ! /Ooo eiNLt)(y* E/32)dy]3 = [1 -Q <\/2E/73NO>}3

7TNO

Since this is independent of the signal chosen, this is the average probability of correct
detection. The symbol error probability is 1 — P.. Generalizing to n dimensions, we

have

et 1o (vaE)

where n = logy M. Note that Ej, = E/n since there are n bits per dimension.

c. The symbol error probability is plotted in Figure 9.3.
Problem 9.16

a. We need 1/2T Hz per signal. Therefore, M =W/ (1/2T) = 2WT.

b. For vertices-of-a-hpercube signaling, M = 2™ where n is the number of dimensions.

Hence M = 22WT

Problem 9.17
In the equation

Pem) - | ” [ / °° Frn (ra|H) dTQ} Frs (ri|H) dr

substitute

2r1 7’%
le(Tl\Hl):meXP 592 ) r1 >0

and

2r r2
IRy (12| Hy) = 2 €xXp -2 ) ro >0
No
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i _—\_\___\_

F g MMnany 008 =
P o EEMEOGH §
=M g =
LT ]
L] =
= e

118 ° -

110 = d

L] |

The inside integral becomes

When substituted in the first equation, it can be reduced to

P(E\H)—/OOLeX —T—% dr
U=, 2Bz + N, P\ TR )

where
No (2EO’ 24 N())
T T 2Es?+ N,
The remaining integral is then easily integrated since its integrand is a perfect differential
if written as X . 2
P(E|Hy) = 3Fo? 1 No ; 71 exp (—i) drq

Problem 9.18
a. Decide hypothesis i is true if

[z, (2|Hi) > fz11,(2|Hj), all j
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where
z2,+z2.
exXp <_ E"0‘2+N0) 1 M
H — : 1 2 | 2
fZ\Hl (Z| 1) M (Ei(ﬂ n NQ) Né\/[ €xp No j:1zj7éi (ZC] + Zs])

This constitutes the maximum likelihood decision rule since the hypotheses are equally
probable. Alternatively, we can take the natural log of both sides and use that as a

test. This reduces to computing
Eo® 2 2
EZ‘O'Q n NO (Zci + Zsi)

and choosing the signal corresponding to the largest. If the signals have equal energy,
then the optimum receiver is seen to be an M-signal replica of the one shown in Fig.
9.8a.

b. The probability of correct decision can be reduced to

P_sz_l m—1 NQ —1 P
C_i:O i ) No+ (Eo?+ No)(M —1—1) c

Problem 9.19

a. It can be shown under hypothesis that Hy, Y7 is the sum of squares of 2N independent
Gaussian random variables each having mean zero and variance
E N
2 2 0
—9— -0
011 NO’ + 5
and Y3 is the sum of squares of 2NV independent Gaussian random variables each
having zero mean and variance
2 _ Mo
021 = &~
2
Therefore, from Problem 4.37, the pdfs under hypothesis H; are

N7167y1/20%1

Y
fyv, p|Hy) = P 4120
2NgNT (V)
and N—-1 /N
- e*y2 0
fva (ol Hy) = =22 Y2 >0

2N (Ng/2)N (N
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' ] 1 ] 1
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Figure 9.4:

b. The probability of error is
P, = Pr (E|H1) =Pr (E‘HQ) =Pr (}/2 > Yl‘Hl)
= /0 [ frs (Z/2|H1)dy2} fvi (y1lHy) dya

Yi
Using integration by parts, it can be shown that

oo "ol
I (.'E, CL) = / Zne_azdz = €_ax E m’m
x =0 'Q

This can be used to get the formula given in the problem statement.
c. Plots are given in Figure 9.4 for N = 1 (solid curve), 2, 3, and 4 (dash-dot curve).
Problem 9.20

a. The characteristic function is found and used to obtain the moments. By definition,

(o) m
¢ (jw)=F [ejA”] = /0 ej’\w%eﬁ)‘)\mld/\
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To integrate, note that

B = jw
Differentiate both sides m — 1 times with respect to 8. This gives

. 1
/ I e PAIN =
0

/oo ej)\w (_1)m—1 /\m—le—ﬁ)\d)\ — (_1)m71 (m — 1)'
0

(8= jw)™
Multiply both sides by 8™ and cancel like terms to get
/oo o I mymetgy = O
0 I'(m) (B—jw)
Thus gm
) = =)
Differentiating this with respect to w, we get
EA =0 - and B[] =20 (0)="0"TD
5 B

The variance is m

Var (A)=FE (A2) —E%*(A) = ?

b. Use Bayes’ rule. But first we need fz (z), which is obtained as follows:

f2(2) = /0 T fan I fa (V) d

— / )\e_AZ—B e PN
0

()
__mB" [P e B2
- i), e
__mom

- (ﬁ—l—z)erl

17

where the last integral is evaluated by noting that the integrand is a pdf and therefore

integrates to unity. Using Bayes’ rule, we find that

A\ (ﬂ + z)m+1 e—(ﬁ—f—z))\
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Note that this is the same pdf as in part (a) except that 5 has been replaced by (§+ z
and m has been replaced by m 4+ 1. Therefore, we can infer the moments from part
(a) as well. They are

m+1
B+ 2)?

:
—_

E[AZ] = and Var[AlZ] =

+7Z

IR

. Assume the observations are independent. Then

fz122|A (ZI,Z2|>\) = )\QQ_A(ZP’—Z?)’ 21, %2 2 0

The integration to find the joint pdf of Z; and Z, is similar to the procedure used to
find the pdf of Z above with the result that

m(m+ 1) g"
(B+21+ Z2)m+2

f2’122 (21722) =

Again using Bayes’ rule, we find that

)\m+16—)\(,8+Z1+Z2) (ﬂ + 21+ 22)m+2
I'(m+2)

TAjz120 (M21,22) =

Since this is of the same form as in parts (a) and (b), we can extend the results there
for the moments to
m+ 2 m+ 2

E[AZ1,25) = ——"2  and Var[A|Z1, Zy) = ——— 2
M Z) = ey VN B = G Ty

. By examining the pattern developed in parts. (a), (b), and (c), we conclude that

B )\m+1+K€—)\(,@+z1+zz+...+zK) (ﬁ 2ttt ZK)m—I—K

fA‘Z1Z2...ZK (>\|21’227"'2K) - F(m+2)

and

m+ 2
B+Z1+Zy+ ...+ 2k
m+ K

(ﬂ+Z1—|—Z2—|—...+ZK)2

E[AZy,Zo, ..., ZK] =

Var [A|Zl,Zg, .. .,ZK] =

Problem 9.21
The conditional mean and Bayes’ estimates are the same if:
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1. C(zx) is symmetric;
2. C(x) is convex upward,;

3. fa|z is symmetric about the mean.
With this, we find the following to be true:

a. Same - all conditions are satisfied;
b. Same - all conditions are satisfied;
c. Condition 3 is not satisfied;

d. Condition 2 is not satisfied.

Problem 9.22

a. The conditional pdf of the noise samples is

- K
K/2 e_Zi:I 2} /207,

[z (217227---72K|037,) = (27“731)

The maximum likelihood estimate for 2 maximizes this expression. It can be found
by differentiating the pdf with respect to o2 and setting the result equal to zero.
Solving for 02, we find the maximum likelihood estimate to be

1 K

~2 2

U":KZ IZZ'
1=

b. The variance of the estimate is

c. Yes.

d. Zfil Z? is a sufficient statistic.
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Problem 9.23

We base our estimate on the observation Zy, where Zy = My + N where N is a Gaussian
random variable of mean zero and variance Ny/2. The sample value My is Gaussian with
mean mg and variance o2,. The figure of merit is mean-squared error. Thus, we use a MAP
estimate. It can be shown that the estimate for mg is the mean value of My conditioned on
Zp because the random variables involved are Gaussian. That is,

mo = E (mg|Zo = 20) = p2o

where

E (MQZ()) . Om

p= VVar (Mo)/Var(Z) B /ggn_i_%

It is of interest to compare this with the ML estimate, which is

mo,ML = 2o

which results if we have no a priori knowledge of the parameter. Note that the MAP
estimate reduces to the ML estimate when o2, — oco. Note also that for Ny — oo (i.e.,
small signal-to-noise ratio) we don’t use the observed value of Zy, but instead estimate my

as zero (its mean).
Problem 9.24

a. The results are

fz (21,200, H1 ) = LNe*%O[(Z1$A)2+(zQiA)2]
TIND

where the top sign in the exponent goes with H; and the bottom sign goes with Ha,

b. The result is

1 _ L (z2472.T 42 2
fz10 (Z1, Z2]0) = 7r—Noe No (Z2+23+54%) cosh [FO (A1Z1 — Ay Zs)

Since the log function is monotonic, we can take the natural log of both sides and
differentiate it with respect to ©, set the result to zero, and have a condition that the
maximum likelihood estimate must satisfy. The result is

/T 2A :
tanh [ TN, (Z1cos@ — Zysinb)

T2A
gﬁ (—Z]_ sin 6 — ZQCOSH) =0
0
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Using definitions for Z; and Zs, which are

T /2 T /2
Z = / Y (t) 1/ = coswet dt and Zy = / y(t) 1/ = sinwct dt
0 T 0 T

this can be put into the form

tanh E/T (t) cos (wet + 0) dt E/T— (t) sin (wet + 0) dt =0
anh | - ; y (t) cos (we vl y (t) sin (w, =

where z = A%T/2Np. This implies a Costas loop type structure with integrators in
place of the low pass filters and a tanh-function in the leg with the cosine multiplica-
tion. Note that for z small tanh () ~ x and the phase estimator becomes a Costas
loop if the integrators are viewed as lowpass filters.

c. The variance of the phase estimate is bounded by

Var (@ML) > m

Problem 9.24
This is similar to the previous problem. For (a) note that
-1 _ . -1 _ 2\1/2
cos [cos m] =m, sin [cos m] = (1 -m )
The development of the log-likelihood function follows similarly to the development of the

one for Problem 9.23. The block diagram of the phase estimator has another arm that adds
into the feedback to the VCO that acts as a phase-lock loop for the carrier component.



Chapter 10

Information Theory and Coding

10.1 Problem Solutions

Problem 10.1
The information in the message is

I(x) = —logy(0.8) = 0.3219 bits
I(x) = —log.(0.8) =0.2231 nats
I(x) = —log;(0.8) =0.0969 Hartleys

Problem 10.2

(a) I (x) = —logy(52) = 5.7004 bits

(b) I (z) = —logy[(52)(52)] = 11.4009 bits
(c) I (z) = —log,[(52)(51)] = 11.3729 bits

Problem 10.3
The entropy is

I(x
I (x
I

I(z) = —0.31ogy(0.3) — 0.251log,(0.25)
—0.2510g,(0.25) — 0.11log,(0.1)
—0.0510g,(0.05) — 0.05log, (0.05) = 2.1477 bits

The maximum entropy is
I (z) =logy b = 2.3219 bits

Problem 10.4
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0.1 0.2

X3 07 Y3

Figure 10.1:

I (x) = 2.471 bits

Problem 10.5
(a) The channel diagram is shown is illustrated in Figure 10.1. (b) The output probabilities
are

1 8
= Z(05+02+0.1)=—=0.2

p(y1) 3(05+0 +0.1) 25 = 0-2067
1 11

p(p) = =(0340.6+0.2)=—=0.3667
3 30
1 11

P3) = 3(0240.240.7) = = = 0.3667

(c) Since
[P (V)] = [P(X)][P(Y]X)]

we can write

[P(X)] = [P(YV)][P(Y]X)]™
which is

2.5333 —1.1333 —0.4000
[P(X)]=1[0.333 0.333 0.333] | —0.8000  2.2000 —0.4000
—0.1333 —0.4667  1.6000
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This gives[P (X)] = [0.5333 0.2000 02.667]
(d) The joint probability matrix is

0.5333 0 0 0.5 0.3 0.2
[P(X;Y)]=[0.333 0.333 0.333] | O 0.2000 0 02 0.6 0.2
0 0 0.2667 | | 0.1 0.2 0.7

which gives
0.2667 0.1600 0.1067
[P(X;Y)] = 0.0400 0.1200 0.0400
0.0267 0.0533 0.1867

Note that the column sum gives the output possibilities [P (Y')], and the row sum gives the
input probabilities [P (X)].

Problem 10.6

For a noiseless channel, the transition probability matrix is a square matrix with 1s on the
main diagonal and zeros elsewhere. The joint probability matrix is a square matrix with
the input probabilities on the main diagonal and zeros elsewhere. In other words

p($1) 0 o 0
$2 e O
oy |V T

Problem 10.7
This problem may be solved by raising the channel matrix

A— 0.999 0.001
~ | 0.001 0.999

which corresponds to an error probability of 0.001, to increasing powers n and seeing where
the error probability reaches the critical value of 0.08. Consider the MATLAB program

a = [0.999 0.001; 0.001 0.999]; % channel matrix
n=1; % initial value
al = a; % save a
while a1(1,2)<0.08

n=n+1;

al=a"n;

end
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n-1 % display result
Executing the program yields n — 1 = 87. Thus we compute (MATLAB code is given)

> a”87

ans =

0.9201 0.0799
0.0799 0.9201
> a”88

ans =

0.9192 0.0808
0.0808 0.9192

Thus 87 cascaded channels meets the specification for P < 0.08. However cascading 88
channels yields Pg > 0.08 and the specification is not satisfied. (Note: This may appear
to be an impractical result since such a large number of cascaded channels are specified.
However, the channel A may represent a lengthly cable with a large number of repeaters.
There are a number of other practical examples.)

Problem 10.8
The first step is to write H (Y|X) — H (Y'). This gives

HY|X)-H(Y)=- Z Zp (@i, y;) logy p (yjlas) — Zp (y;) logy p (y))

which is
H(Y|X)-H(Y)=- Zzp(fci,yj) llogy p (y;]2s) — logy p (yi)]
HYX) - H{Y)= MZZp oo b 1“[ <(x§}f</i)z>}

Since Inz < x — 1, the preceding expression can be written

H(Y|X) - H _mzzp [ﬁ_l}
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Figure 10.2:

or
1
H(YIX) = H(Y) < =3 ST pean(y) = 303 p ()
i g i
The term in braces is zero since both double sums evaluate to one. Thus,
HY|X)-H(Y)<O0

which gives
H(Y) > H (Y|X)

Problem 10.9
For this problem note that H (Y| X) = 0 so that I (Y|X) = H (X). It therefore follows that

C =1 bit/symbol

and that the capacity is achieved for

Problem 10.10
For this problem, the channel diagram is illustrated in Figure 10.2. Note that

pylzr) = 1 p(yelr) =0
p(yilee) = 1 p(yelre) =0
p(ytles) = 0 p(yelas) =1
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Thus
H(Y|X)= ZZP wi,y;) logy p (yj|2i) =

since each term in the summand is zero. Thus
I(X;Y)=H(Y)
The capacity is therefore
C=1 bit/symbol
and is achieved for source probabilities satisfying

1

p(x1)+p(x2) == p(x3) = =

2
Note that capacity is not achieved for equally likely inputs.

Problem 10.11
For the erasure channel
C=p bits/symbol

and capacity is achieved for equally likely inputs.

Problem 10.12
The capacity of the channel described by the transition probability matrix

p qg 00
g p 0 0
0 0 p ¢q
0 0 g p

is easily computed by maximizing
I(X;Y)=H((Y)—-H((Y|X)

The conditional entropy H (Y| X) can be written

H(Y[X) = ZZP i) p (yj|wi) loga p (y5]@:) = Zp i) H (Y|2;)

where

(Y‘xz = Zp y]‘x%)log2p(y]’xl)
J
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For the given channel
H (Y|x;) = —plogyp — qlogy ¢ = K

so that H (Y|x;) is a constant independent of i. This results since each row of the matrix
contains the same set of probabilities although the terms are not in the same order. For
such a channel

H(Y|X) = Zp ) K =K

and
I(X;Y)=H(Y)-K

We see that capacity is achieved when each channel output occurs with equal probability.
We now show that equally likely outputs result if the inputs are equally likely. Assume
that p (2;) = % for all i. Then

Zp i) p (yjlzi)

For each j
1 1
P (y)) 4Zpyylwz— (p+a) =+ 01-p)=7

so that

1
Z’ all j
Since p (y;) = 1 for all j, H (Y) = 2, and the channel capacity is

p(y;) =

C =2+ plogyp+ (1 —p)logy (1 —p)

or

C=2-H(p)

This is shown in Figure 10.3.

This channel is modeled as a pair of binary symmetric channels as shown. If p =1 or
p = 0, each input uniquely determines the output and the channel reduces to a noiseless
channel with four inputs and four outputs. This gives a capacity of logs 4 = 2 bits/symbol.
Ifp=gq= %, then each of the two subchannels (Channel 1 and Channel 2) have zero
capacity. However, 1 and x9 can be viewed as a single input and x3 and x4 can be viewed
as a single input as shown in Figure 10.4. The result is equivalent to a noiseless channel
with two inputs and two outputs. This gives a capacity of log, 2 = 1 bit/symbol.

Note that this channel is an example of a general symmetric channel. The capacity of
such channels are easily computed. See Gallager (1968), pages 91-94 for a discussion of
these channels.
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C
2 I I
| |
| |
| |
| |
1 | |
| |
| |
| |
| |
] |
0 1/2 1 p
Figure 10.3:
p
'xl q yl
Channell —p
‘x2 p y2
X, p
Channel 2 —p q 73
'x4 p y4

Figure 10.4:
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Problem 10.13
To show (10.30), write p (x;,y;) in (10.28) as p (z;|y;) p (y;) and recall that

logy p (4, y5) = logy p (z4]y;) + loga p (y;5)

Evaluating the resulting sum yields (10.30). The same method is used to show (10.31)
except that p (x;,y;) is written p (yjla;) p (z4) -

Problem 10.14
The entropy is maximized when each quantizing region occurs with probability 0.25. Thus

1 1
/ ae”“dr=1—e"1 = —
0 4

which gives
3

—azry _
4

or

1 4
) = Eln <§> =0.2877/a
In a similar manner

2 3 1
ae M dy — 79T _ pm0%y — 2 pmazy, _
T1 4

which gives

e~ 0%y — =
or 1
xg = —1In(2) =0.6931/a
a
Also
/13 —axr 1
ae” Ydxr = 1
T3
gives

x3 = 1.3863/a

Problem 10.15
The thresholds are now parameterized in terms of o. The results are

x1 = 0.75850
ro = 117740
xr3 = 1.665lc
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Problem 10.16
First we compute the probabilities of the six messages. Using symmetry, we only need
compute three states; mg, mg, and ms.

1 7 2/ 1
p(ms) = \/ﬂa/o e v’/ 2dy:§—Q(1):0.3413

20
p(ma) = \/2170/ e V27 4y = Q (1) — Q (2) = 0.1359
p(ms) = \/2170L e V27 4y = Q (2) = 0.0228

By symmetry
p(mg) = p(ms)=0.0228
p(mi) = p(mg)=0.1359
p(ma) = p(ms3)=0.3413

the entropy at the quantizer output is

H(X) = —2[0.3413 logy 0.3413 + 0.1359 logy 0.1359 + 0.0228 log, 0.0228]
2.09 bits/symbol
Since the symbol (sample) rate is 500 samples/s, the information rate is

r =500 H (X) = 1045 symbols/s

Problem 10.17

Five thresholds are needed to define the six quantization regions. The five thresholds are
—ko, —k1, 0, k1, and ky. The thresholds are selected so that the six quantization regions
are equally likely. Finding the inverse Q-function yields

k1 = 0.4303 ko = 0.9674

This gives the quantizing rule

Quantizer Input Quantizer Output
—o00 < z; < —0.96740 my
—0.96740 < x; < —0.43030 mq
—0.43030 < x; <0 mo
0 < x; <0.43030 ms3

0.43030 < x; < 0.96740 my
0.96740 < x; < 0 ms
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Problem 10.18
The transition probabilities for the cascade of Channel 1 and Channel 2 are

pi1 pi2 | | 09 0.1 0.75 025 | |07 03
P21 P22 101 0.9 025 075 | | 0.3 0.7

Therefore, the capacity of the overall channel is
C=1+0.7 logy 0.7+ 0.3 logy 0.3 =0.1187 bits/symbol
The capacity of Channel 1 is
C=140.9 logy 0.9+ 0.1 logy 0.1 =0.5310 bits/symbol
and the capacity of Channel 2 is
C =1+40.75 logy 0.75+ 0.25 logy 0.25 = 0.1887 bits/symbol

It can be seen that the capacity of the cascade channel is less than the capacity of either
channel taken alone.

Problem 10.19
For BPSK, the error probability is Q (\/ 22). From the data given

Uplink error probability = 0.000191
Downlink error probability = 0.005954

Using the techniques of the previous problem, or equivalently, Equation (10.24), yields the
overall error probability
Pg =0.006143

Note that for all practical purposes the performance of the overall system is established by
the downlink performance.
Problem 10.20

The source entropy is

3

3 1 1

and the entropy of the fourth-order extension is

H(X") =4H (X) = 4(0.3113) = 3.2451
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The second way to determine the entropy of the fourth-order extension, is to determine the
probability distribution of the extended source. We have

81
1 symbol with probability 256

27

4 bols with probability —
symbols with probability -
9

6 bols with probability —
symbols with probability -
3

4 Is with ility —
symbols with probability 556

1
1 symbol with probability 256

Thus
81 81 o7 o7 9 9
4

= logy— — 4t logy o ) — 6 [ — logy —
H(X7) 256 1082 956 4 (256 082 256) 0 <256 082 256>

4 (2 10g, = L Jog, —

— —_ 0 —_ S — —_

256 2256 ) 256 °2 256

= 3.2451 bits/symbol

Problem 10.21
For the fourth-order extension we have

Source Symbol P () Codeword

AAAA 0.6561 O

BAAA 0.0729 100
ABAA 0.0729 101
AABA 0.0729 110
AAAB 0.0729 1110
AABB 0.0081 111100
ABAB 0.0081 1111010
BAAB 0.0081 1111011
ABBA 0.0081 1111100
BABA 0.0081 1111101
BBAA 0.0081 1111110
ABBB 0.0009 111111100
BABB 0.0009 111111101
BBAB 0.0009 111111110
BBBA 0.0009 1111111110

BBBB 0.0001 1111111111
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The average wordlength: L = 1.9702 which is L/4 = 1.9702/4 = 0.4926. The efficiencies
are given in the following table:

L H (X™) Efficiency
1 0.4690  46.90%
1.29 0.9380  72.711%
1.598  1.4070  88.05%
1.9702 1.8760  95.22%

B~ W N =3

Problem 10.22
For the Shannon-Fano code we have

Source Symbol P () Codeword

mi 0.2 00
ma 0.2 01
m3 0.2 10
my 0.2 110
ms 0.2 111

The entropy is
H(X)=-5(0.2 logy 0.2) =2.3219

The average wordlength is
I=(02)(24+2+2+3+3) =24
The efficiency is therefore given by

H(_X) = 2319 = 0.9675 = 96.75%
L 24

The diagram for determining the Huffman code is illustrated in Figure 10.5. This diagram
yields the codewords

mi 01

mo 10

ms 11

my 000

ms 001

The average wordlength is

L=02(2+2+2+3+3)=24
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0.6
0
1
0.4

—— 04
0.4 0
1
m; 0.2 0.2
m, 02 —
0
1
my 02 —
m, 02 —
) 0
1
mg 02 —
Figure 10.5:

Since the average wordlength is the same as for the Shannon-Fano code, the efficiency is
also the same.

Problem 10.23
The codewords for the Shannon-Fano and Huffman codes are summarized in the following
table:

Codewords
Source Symbol P () Shannon-Fano Huffman
mi 0.40 00 1
mo 0.19 01 000
ms3 0.16 10 001
my 0.15 110 010
ms 0.10 111 011

The average wordlengths are:

= 225 (Shannon-Fano code)
= 2.22 (Huffman code)

=~

Note that the Huffman code gives the shorter average wordlength and therefore the higher
efficiency.
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Problem 10.24
The entropy is

H(X) = —0.85 logy 0.85—0.15 log, 0.15
= 0.60984 bits/symbol

We know that

lim r£ < 300
n—oo n
and that B
L
lim — = H (X)
n—oo N
Therefore, for n large
rH (X) <300
or
300 300

< =
"=H(X) " 060084

which gives
r < 491.932 symbols/s

Problem 10.25
The Shannon-Fano and Huffman codes are as follows. (Note that the codes are not unique.)

Codewords

Source Symbol Shannon-Fano Huffman
my 000 001
mo 001 010
ms 010 011
my 011 100
ms 100 101
me 101 110
mry 110 111
ms 1110 0000
my 1111 0001

In both cases, there are seven codewords of length three and two codewords of length
four. Thus, both codes have the same average wordlengths and therefore have the same
efficiencies. The average wordlength is

L= % [7(3)+2(4)] = % = 3.2222
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Since the source entropy is
H(X)= logy, 9=3.1699

the efficiency is
H(X)

E:T
L

= 98.38%

Problem 10.26
For the Shannon-Fano code we have

Source Symbol P () Codeword

mi 1/12° 000
ma 1/12 0010
ms 1/12 0011
My 1/12 010
ms 1/12 0110
me 1/12 0111
my 1/12 100
ms 1/12 1010
me 1/12 1011
mio 1/12 110
mi 1/12 1110
mis /12 1111

The average wordlength is

— 1 44
S [4(3) +8(4)] = 7 = 3.6667

and the entropy of the source is
H (X)= log, 12 = 3.5850

This gives the efficiency

E= @ =0.9777 = 97.77%

The diagram for determining the Huffman code is illustrated in Figure 10.6. This yields
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mo 1/12— 0

m, 1/12 —
ms 1/12 —
m, 1/12 —
ms 1/12 —
mg  1/12 —

m, /12— 0

mg /12 — 1

my 1/12 —
mygy  1/12 —

my;  1/12— 0

m, 1/12 —

the codewords:

I

-
-

1/3

173 —

13 —

Figure 10.6:

Source Symbol Codeword
mi 100
ma 101
ms 110
my 111
ms 0000
me 0001
my 0010
mg 0011
mg 0100
mig 0101
mi1 0110
mi2 0111

2/3

1/3

0

17

As in the case of the Shannon-Fano code, we have four codewords of length three and eight
codewords of length four. The average wordlength is therefore 3.6667 and the efficiency is
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97.77%.

Problem 10.27
The probability of message my, is

0.1k
P (my) = / 2xdr =0.01(2k - 1)
0.1(k—1)
A Huffman code yields the codewords in the following table:
Source Symbol P () Codeword

mio 0.19 11

mg 0.17 000
mg 0.15 010
my 0.13 011
me 0.11 100
ms 0.09 101
my 0.07 0011
ms 0.05 00100
mo 0.03 001010
mi 0.01 001011

The source entropy is given by
H (X)) = 3.0488 bits/source symbol
and the average wordlength is
L = 3.1000 binary symbols/source symbol
A source symbol rate of 250 symbols (samples) per second yields a binary symbol rate of
rL = 250(3.1000) = 775 binary symbols/second
and a source information rate of

Rs =rH (X) = 250(3.0488) = 75.2 bits/second

Problem 10.28
The source entropy is

H(X) = —0.4 log, 0.4—0.3 log, 0.3—0.2 log, 0.2— 0.1 log, 0.1
= 1.84644 bits/source symbol
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and the entropy of the second-order extension of the source is
H (X?) =2H (X) = 3.69288

The second-order extension source symbols are shown in the following table. For a D = 3
alphabet we partition into sets of 3. The set of code symbols is (0, 1, 2).

Source Symbol P () Codeword

mimq 0.16 00
mi1msy 0.12 01
momi 0.12 02
maoimy 0.09 10
mims3 0.08 11
msmi 0.08 12
mama 0.06 200
mM3me 0.06 201
mams 0.04 202
mi1may 0.04 210
mymy 0.04 211
momay 0.03 212
mama 0.03 220
mamaq 0.02 221
mMyms 0.02 2220
M4y 0.01 2221

The average wordlength of the extended source is

L = 2(0.16+0.12+ 0.12 4 0.09 + 0.08 + 0.08)
+3(0.06 + 0.06 + 0.04 + 0.04 + 0.03 + 0.03 + 0.02)
+4(0.02 + 0.01)

= 2.38

Thus the efficiency is

2
o H(X?) 369288

= = — = 97.9%
L log, D (2:38) log, 3 0

Problem 10.29
The set of wordlengths from Table 10.3 is {1, 3,3,3,5,5,5,5}. The Kraft inequality gives

3
li _ o1 -3 sy _ 1 3 4
;2 =27 3 (270) +4(270) =g+ gt 55 =1
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x 10

Capacity - bits/s

10 10° 10 10° 10° 10’ 10°
Frequency

Figure 10.7:

Thus the Kraft inequality is satisfied.

Problem 10.30
From (10.82), the Shannon-Hartley law with S = 40 and N = 10~*B gives

S 40 (10*

This is illustrated in Figure 10.7. It can be seen that as B — oo the capacity approaches a
finite constant.

Problem 10.31
From the previous problem

40 (10%)
Cc:BlOg2 1+T
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Since In (1 4+ u) = u for < 1, we can write that, as B — oo,

_ 40 (10%)

—_— 5 1
) 5.7708 (10°) bits/s

Problem 10.32

For a rate % repetition code we have, assuming an error probability of (1 — p) on a single

transmission,
_ () 2 3, (9 4, (D 5
Pg=(z)p*(1=p’+ (5 )pl-p) "+ (=] (1-p)
3 4 5
which is
12 3 1 5
Pg=10p~(1-p)” +5p(1—p)" + (1 —p)
or

Pp=10(1-¢)° @ +5(1 —q)¢* +¢°

where ¢ = 1 — p. For a rate % code we have the corresopnding result (See (10.94) with
q=1-p)
P =3¢*(1—q) +¢°

The results, generated by the MATLAB code,

q=0:0.01:0.1;

p5 = 10*%((1-q)."2) .*(q."3)+5x(1-q) .*x(q."4)+(q."5);
p3 = 3*(1-q) .*x(q."2)+(q."3);

plot(q,p3,q,p5)

xlabel (’Error probability - (1-p)’)

ylabel(’Word error probability’)

are illustrated in Figure 10.8. The top curve (poorest performance) is for the rate % code

and the bottom curve is for the rate % repetition code. Note that these results are not

typically compariable since the values of p and g change as the code rate changes.

Problem 10.33
The parity-check matrix for a (15,11) Hamming code is

0000111111110 00
(H] = 011100011110100
101101100110010
11011010101000T1
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0'03 T T T T T T T T T

0.025

0.02}

0.015

W ord error probability

0.01}

0.005

0 0.01 0.02 0.03 004 0.05 006 0.07 008 0.09 0.1

Error probability - q=(1-p)

Figure 10.8:

Since the columns of [H] are distinct and all nonzero vectors of length three are included
in [H], all single errors can be corrected. Thus,

or

Note that it is not necessary to find the set of codewords.

Problem 10.34

The parity-check matrix will have 15 — 11 = 4 rows and 15 columns. Since rows may be
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permuted, the parity-check matrix is not unique. One possible selection is

000011111111000
[H]2011100011110100
101101100110010
1 1011010101000 °1
The corresponding generator matrix is
(1000 0000O0O0O0]
01 00000O0O0GO0O0
00100000000
00010000000
00001000000
00000100000
00000010000 ;
[G]:00000001000_[H“]
0000O0DO00O0GO0T1O00 1
00000O0DO0O0O0T10
0000O0O0DO0OO0O01
00001111111
01110001111
101101100171
11011010101,

where 177 is the 11 x 11 identity matrix and Hi; represents the first 11 columns of the parity-
check matrix. From the structure of the parity-check matrix, we see that each parity symbol
is the sum of 7 information symbols. Since 7 is odd, the all-ones information sequence yields
the parity sequence 1111. This gives the codeword

[T)" = [111111111111111]

A single error in the third position yields a syndrome which is the third column of the
parity-check matrix. Thus, for the assumed parity-check matrix, the syndrome is

5] =

O~ = O

Problem 10.35
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For the given parity-check matrix, the generator matrix is

1 0 0 O

0100

0010

[G]l=|0 0 0 1

1101

1 110

001 1 1|

This gives the 16 codewords (read vertically)

al0 OOO0OO0OOO0OO0OT1T1 111111
a0 0001 1 1 1 0 0O0O0 1 1 11
a0 01 1 0 01 1 0 01 10011
a4|l0 1 01 01 0101 01O01O01
cc|/0O1 o011 0101O01O0O0T1O01
cc|0 0 1 1 1 1 001 1 0O0O0O0T1'1
c3|0O01 101 0 01 01 1 010 01

Problem 10.36
We first determine [T;] = [G] [4;] for i = 1, 2. The generator matrix for the previous problem
is used. For [A;] we have

0
0 1
1 1
@al=ic| =0 |=ml
ol 1
L 0
and for [As] we have
-
1
' 1
@l =ic)| | =0 |=m
0 0
1
L 0]
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We note that

[Ar] @ [Ag] =

o O O

and

(Gl {{A] @ [Ag]} = [G]

o O O =
Il
O = == OO o =

which is [T7] & [13].

Problem 10.37
For a rate % repetition code

1
Gl =1
L 1 -
and for a rate % repetition code
1
1
Gl=|1
1
L 1 -

The generator matrix for a rate % repetition code has one column and n rows. All elements
are unity.

Problem 10.38
For a Hamming code with r = n — k parity check symbols, the wordlength n is

n=2"—-1

and
k=2"—-r—1

The rate is
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If n is large, r is large. As r — oo both k and n approach 2". Thus

27‘
lim R=lim R=—=1

n—00 r—00 or

Problem 10.39
The codeword is of the form (ajazasascicacs) where

1 = a1DaxBas
2 = axDazDag
3 = arDaxDdag
This gives the generator matrix
1 0 0 07
0100
0 010
[Gl=(0 0 0 1
1110
01 1 1
|1 1 0 1 |

Using the generator matrix, we can determine the codewords. The codewords are (read
vertically)

a0 1 1 11 0 0011 1 O0O0O0 01
a0 01 1 1 001 01 011 010
a3 |0 0 0O1 101 1 1 0 01 O0 101
4|0 00 O0O1 1 1 1 1 1 1 00010
cc|0 1 01 1 01 0 O0O0OT1O0T1 11O
c2 |0 0 1 1 1 1 0 1 1 1 0 1
c3|{0 1 001 1 1 0O01O01 1001

Let «; denote the i-th code word and let a; — ¢ indicate that a cyclic shift of «; yields
a;j. The cyclic shifts are illustrated in Figure 10.9.

Problem 10.40

The parity-check matrix for the encoder in the previous problem is

ko)

111
H=]|0 11
110

_ = O
o O =

0 0
10
01
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z Q—=0, =>0,— 0|0, —=0,,—=0, —

Figure 10.9:
For the received sequence
[R]" = [1101001]
the syndrome is
0
[S]=[H][R] = | 0
0

This indicates no errors, which is in agreement with Figure 10.17. For the received sequence

[R]" = [1101011]
the syndrome is
0
[S]=[H][R] = | 1
0

This syndrome indicates an error in the 6th position. Thus the assumed transmitted code-
word is

[T] = [1101001]

which is also in agreement with Figure 10.17.

Problem 10.41
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For the modified encoder we can write

St

S

ai

a1 @ as

a1 @ az b as
a2 D a3 D ay
0

0

0

Thus, the output for each step is

0

ai

a1 b az

a1 Daz D ag
a2 ® a3z daq
0

0

Output

This gives the generator matrix

Using the generator matrix, the codewords can be constructed. The 16 codewords are (read

vertically)

ap
a2
ag
ay

C1
C2
C3

o O o O

o O

o O o

S =

O O ==

O =

— e =
_ o O O

— o O o=
—_ =
—_

_ =0 O

O =

ai
a
as
a4
a1 b az P ay
a1 b az ®as
a2 b az P ay

SO = = OO O
el eBell
= =0, OO0
—_— O = = O OO

_ == O
—__ O
—_ O = =

o O
S =
o O

o o

)

ai

a1 D az

a1 D az D as
as DasPay
0

O~ = O
o O = O
O~ OO

O =
)
—_ =

_ o = O

O ==

O = O =

o O
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Figure 10.10:

As in Problem 10.39, let o; denote the i-th code word and let a; — «; indicate that a cyclic
shift of o; yields ;. These cyclic shifts are illustrated in Figure 10.10.

Problem 10.42
For a (15,11) Hamming code, the uncoded symbol error probability is given by

Qu ZQ{ 22/’4

where
zZ = STw/N(]

and k = 11. This gives the uncoded word error probability
Poy=1—(1-g)"

For the coded case, the symbol error probability is

qczQ[\/m]

and the coded word error probability is

15
Pec = Z <15> qi (1 — 4 )15_i
i)e ¢

1=2

The performance curves are generated using the MATLAB M-files given in Computer Ex-
ercise 10.2 in Section 10.2 (Computer Exercises) of this solutions manual. The results are
shown in Figure 10.11. The solid curves represent the symbol error probability with the
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Figure 10.11:

coded case on top (worse performance) and the uncoded case on bottom. The dashed curves
represent the word error probability with the coded case (better performance) on bottom.

Problem 10.43
The probability of two errors in a 7 symbol codeword is

P {2 errors} = <;) (1- qc)5 qg = 21q§ (1- qc)5

and the probability of three errors in a 7 symbol codeword is

7
3> (1 - QC)4 qz) = 35(]2 (1 - QC)4

The ratio of P {3 errors} to P {2 errors} is

_ Pr{3errors} 35¢2(1— )
- Pr{2errors} 21¢2 (1 — qc)°

P {3 errors} = <

R
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We now determine the coded error probability ¢.. Since BPSK modulation is used

z

e-o(y3)

where z is STy, /No. This gives us the following table

qc

R= Pr{3 errors}:

Pr{2 errors}

8dB

9dB

10dB
11dB
12dB
13dB
14dB

It is clear that as the SNR, z, increases, the value of R becomes negligible.

Problem 10.44

0.0897
0.0660
0.0455
0.0290
0.0167
0.0085
0.0037

0.1642
0.1177
0.0794
0.0497
0.0278
0.0141
0.0062

The parity-check matrix for a (7,4) Hamming code is

[H] =

0001111
0110011
1 010101

31

The parity checks are in positions 1,2, and 4. Moving the parity checks to positions 5, 6,

and 7 yields a systematic code with the generator matrix

which has the partity-check matrix

[H] =

Il
_——_0 O O O =

—_
_ o =

O =

00
10
01
00
11
01
10
11
10
10

— = =0 00

O =

e}
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Note that all columns of [H| are still distinct and therefore all single errors are corrected.
Thus, the distance three property is preserved. Since the first four columns of [H] can be
in any order, there are 4! = 24 different (7,4) systematic codes. If the code is not required
to be systematic, there are 7! = 5040 different codes, all of which will have equivalent
performance in an AWGN channel.

Problem 10.45

For the encoder shown, the constraint span is k = 4. We first need to compute the states
for the encoder. The output is v1v9 where v1 = s1 P s2 D s3 D s4 and vo = 1 D S3 D S4.

We now compute the state transitions and the output using the state diagram shown in
Figure 10.12. This gives the following table.

Previous Current
State 818989 Input s1s95384 State Output
A 000 0 0000 A 00
1 1000 E 11
B 001 0 0001 A 11
1 1001 E 00
C 010 0 0010 B 10
1 1010 F 01
D 011 0 0011 B 01
1 1011 F 10
E 100 0 0100 C 11
1 1100 G 00
F 101 0 0101 C 00
1 1101 G 11
G 110 0 0110 D 01
1 1110 H 10
H 111 0 0111 D 10
1 1111 H 01

Problem 10.46

For the encoder shown, we have v; = s1 ® s9 ® s3 and vy = s1 @ s9. The trellis diagram
is illustrated in Figure 10.13. The state transitions, and the output corresponding to each
transition appears in the following table.
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Figure 10.12:

State s1s0 Input s3ses3 State Output

A 00 0 000 A 00
1 100 C 11
B 01 0 001 A 11
1 101 C 00
C 10 0 010 B 10
1 110 D 01
D 11 0 011 B 01
1 111 D 10

Problem 10.47
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Figure 10.13:

The source rate is rs = 2000 symbols/second. The channel symbol rate is

n 7
c =TsT = 2 —_ =
Te =TsT 000 ( 4> 3500
If the burst duration is T3, then

n
T'ch = T'STbE

channel symbols will be affected. Assuming a (7,4) block code, we have
7
rIp = (2000) (0.15) (Z) = 525

symbols affected by the burst. Let the table contain | = 525 codewords. This corresponds
to (525) (7) = 3675 symbols in the table. Thus 3675 — 525 = 3150 must be transmitted
without error. The transmission time for 3150 symbols is

3150 symbols

=09 d
3500 symbols/second POCORES
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Problem 10.48
The required plot is shown in Figure 10.14.
10.2 Computer Exercises

Computer Exercise 10.1

For two messages the problem is easy since there is only a single independent probability.
The MATLAB program follows

a =0.001:0.001:0.999;
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Figure 10.15:

b =1-a;

lna = length(a);

H = zeros(1,1lna);
H=-(a.*log(a)+b.*log(b))/log(2);
plot(a,H);

xlabel(’a’)

ylabel(’Entropy’)

The plot is illustrated in Figure 10.15.

For three source messages we have two independent probabilities. Two of them will be
specified and the remaining probability can then be determined. The resulting MATLAB
code follows:

n = 50; % number of points in vector
nn = n+l; % increment for zero



10.2. COMPUTER EXERCISES 37

H = zeros(nn,nn); % initialize entropy array
z = (0:n)/n; % probability vector
z(1) = eps; % prevent problems with log(0)

for i=1:nn
for j=1:nn
c = 1-z()-z(j); % calculate third probability
if ¢>0
xx = [z(1) z(j) c];
H(i,j)= -xx*log(xx)’/log(2); I compute entropy

end
end
end
colormap([0 O 0]) % b&w colormap for mesh
mesh(z,z,H) ; % plot entropy
view(-45,30); % set view angle

2

xlabel(’Probability of message a’
ylabel(’Probability of message b’
zlabel(’Entropy’)

figure % new figure
contour(z,z,H,10) % plot contour map
xlabel(’Probability of message a’)

ylabel(’Probability of message b’)

4

The resulting plot is illustrated in Figure 10.16. One should experiment with various viewing
locations.

Next we draw a countour map with 10 countour lines. The result is illustrated in Figure
10.17. Note the peak at 0.33, 0.33, indicating that the maximum entropy occurs when all
three source messages occur with equal probability.

Computer Exercise 10.2

The performance curves for a (15,11) Hamming code, on the basis of word energy and
word error probability were derived in Problem, 10.42. The equivalent results for a (31,26)
Hamming code are given in Figure 10.18. As in the case of the (7,4) Hamming code,
the solid curves represent the symbol error probability with the coded case on top (worse
performance) and the uncoded case on bottom. The dashed curves represent the word error
probability with the coded case (better performance) on bottom.

The computer code for the (31,26) code is as follows:

zdB = 0:10; % Es/No in dB
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Figure 10.16:

z = 10.7(zdB/10); % Es/No in linear units

argl = sqrt(2xz); % Q-function argument for PSK
psu = 0.5%(1-erf(argl/sqrt(2.0))); % PSK symbol error probability
pwu = 1-(1-psu)."k; % uncoded word error probability
arg2 = sqrt(2*xk*z/n); % Q-function argument for coded PSK
psc = 0.5%(1-erf(arg2/sqrt(2.0))); % coded PSK symbol error probability
pwc = werrorc(n,k,1,psc); % coded word error probability

z = zdB+10%1log10(k) ; % scale axis for plot (STw/No)

b

semilogy(zz,psu, ’k-’,zz,psc, k-’ ,zz,pwu, ’k--’ ,zz,pwc, ’k--’)

xlabel(’STw/No in dB’)
ylabel(’Probability’)

The results for the (7,4) Hamming code are generated by changing the first line of the pro-
gramton = 7; k = 4. The main program calls two functions werrorc.m and nkchoose.m.
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These follow.

function [y] = werrorc(m,k,t,psc)
1x = length(psc);

y = zeros(1,1x); % initialize y
for i=1:1x % do for each element of psc
sum = O;

for j=(t+1):n
nkc = nkchoose(n,j);
term = log(nkc)+j*log(psc(i))+(n-j)*log(l-psc(i));
sum = sumtexp(term);
end
y(i) = sum;
end

39
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Figure 10.18:

function out=nkchoose(n,k)
% Computes n!/k!/(n-k)!

a = sum(log(l:n)); % 1n of n!

b = sum(log(1:k)); % 1n of k!

c = sum(log(1: (n-k))); % 1n of (n-k)!
out = round(exp(a-b-c)); % result

% End of function file.

Note: The preceding function is called nkchoose rather than nchoosek in order to avoid
conflict with the function nchoosek in the communications toolbox. We prefer to compute
the binomial coefficient using logorithms in order to obtain the large dynamic range needed
for some very long codes.

Computer Exercise 10.3
The MATLAB code for implementing the given equation is
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function [ber] = cer2ber(q,n,d,t,ps)

% Converts channel symbol error rate to decoded BER.

% Based on (1.7.30) in ’’Principles of Secure Communication Systems’’
% by D.J. Torrieri (2nd Edition), Artech House, 1992.
% Parameters:

% q - alphabet size (2 for binary)

% n - block length

% d - minimum distance of code

% t - correctable errors per block (usually t=(d-1)/2)
% ps - vector of channel symbol error rates

% ber - vector of bit error rates

lnps = length(ps); % length of error vector
ber = zeros(1,lnps); % initialize output vector
for k=1:1nps % iterate error vector

cer = ps(k); % channel symbol error rate
suml = 0; sum2 = 0; % initialize sums
% first loop evaluates first sum
for i=(t+1):d
term = nkchoose(n,i)*(cer~i)*((1-cer)) (n-i);
suml = suml+term;
end
% second loop evaluates second sum
for i=(d+1):n
term = i*nkchoose(n,i)*(cer~i)*((1l-cer) " (n-1i));
sum?2 = sum2+term;
end
% comput BER (output)
ber(k) = (q/(2*(g-1)))*((d/n)*sumi+(1/n)*sum?) ;
end

In order to demonstrate the preceding function with a (7,4) Hamming code, we use the
following MATLAB program:

zdB = 0:0.1:10; % set Eb/No axis in dB

z = 10.7(zdB/10); % convert to linear scale
beru = qfn(sqrt(2*z)); % PSK result

cerham = qfn(sqrt(4*z*2/7)); % CSER for (7,4) Hamming code

berham = cer2ber(2,7,3,1,cerham); % BER for Hamming code
semilogy(zdB,beru,zdB,berham) % plot results
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xlabel(’E_b/N_o in dB’) % label x axis

ylabel(’Bit Error Probability’) 7% label y axis
The MATLAB function for the Gaussian Q-function follows:

function out=qfn(x)
% Gaussian Q function
out =0.5xerfc(x/sqrt(2));

Executing the code yields the result illustrated in Figure 10.19. It can be seen that the
(7,4) Hamming code yields only a moderate performance improvement at high SNR.

Computer Exercise 10.4
The MATLAB program is

zdB = 0:0.1:10; % set Eb/No axis in dB
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z = 10.~(zdB/10); % convert to linear scale

berl = gfn(sqrt(2x*z)); % PSK result

ber2 = qfn(sqrt(12*2*z/23)); % CSER for (23,12) Golay code
ber3 = qfn(sqrt(4*xz*2/7)) ; % CSER for (15,11) Hamming code

bergolay = cer2ber(2,23,7,3,ber2); % BER for Golay code
berhamming = cer2ber(2,7,3,1,ber3); % BER for Hamming code
semilogy(zdB,berl,zdB,bergolay,zdB,berhamming)
xlabel(’E_b/N_o in dB’)

ylabel(’Bit Error Probability’)

The funcrions Q and cer2ber are given in the previous computer exercise.

The results are illustrated in Figure 10.20. The order of the curves, for high signal-to-
noise ratio, are in order of the error correcting capability. The top curve (worst performance)
is the uncoded case. The middle curve is for the (7,4) Hamming code and the bottom curve
is for the (23,12) Golay code.

Computer Exercise 10.5
The MATLAB code for generating the performance curves illustrated in Figure 10.18 in the
text follows.

zdB = 0:30;

z = 10.7(zdB/10);

ga = 0.5%exp(-0.5%z);

ga3 = 0.5*exp(-0.5%z/3);

ga7 = 0.5xexp(-0.5%z/7);

pa7 = 35%((1-qa7)."3).x(qa7."4)+21*((1-qa7)."2) .*(qa7.75). ..
+7x(1-qa7) .*(qa7.76)+(qa7.77);

pa3 = 3*(1-qa3).*(qa3."2)+(qa3."3);

gr = 0.5./(1+2/2);

qr3 = 0.5./(1+z/(2%3));

qr7 = 0.5./(1+z/(2%7));

pr7 = 35x((1-qr7).73) .x(qr7.74)+21*((1-qr7)."2) .*(qr7.75)...
+7x(1-qr7) .*(qr7.76)+(qr7.77);

pr3 = 3*x(1-qr3) .*(qr3."2)+(qr3."3);

semilogy(zdB,qr,zdB,pr3,zdB,pr7,zdB,qa,zdB,pa3,zdB,pa7)

axis([0 30 0.0001 1])

xlabel(’Signal-to-Noise Ratio, z - dB’)

ylabel(’Probability ’)

Executing the code yields the results illustrated in Figure 10.21. The curves can be identified
from Figure 10.18 in the text.
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Figure 10.20:

Computer Exercise 10.6

For this Computer Exercise we use the uncoded Rayleigh fading result from the previous
Computer Exercise and also use the result for a Rayleigh fading channel with a rate 1/7
repetition code. The new piece of information needed for this Computer Exercise is the
result from Problem 9.17. The MATLAB code follows:

zdB = 0:30;

z = 10.7(zdB/10);

gqrl = 0.5./(1+2/2);

qr7 = 0.5./(1+z/(2%7));

pr7 = 35x((1-qr7).73) .x(qr7.74)+21*((1-qr7)."2) .*(qr7.75) ...
+7x(1-qr7) .*(qr7.76)+(qr7.77);

% Calculations for diversity system

pd7 = zeros(1,31);

N=7;
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for i=1:31
sum = O;
a = 0.5/(1+z(1)/(2*N));
for j=0:(N-1)
term = nkchoose(N+j-1,j)*((1-a)~j);
sum = sumt+term;
end
pd7(i) = (a"N)*sum;
end
b
semilogy(zdB,qrl,zdB,pr7,zdB,pd7)
axis([0 30 0.0001 11)
xlabel(’Signal-to-Noise Ratio, z - dB’)
ylabel(’Probability’)

30
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Figure 10.22:

The function nkchoose follows:

function out=nkchoose(n,k)
% Computes n!/k!/(n-k)!

a = sum(log(l:n)); % 1ln of n!

= sum(log(1:k)); % 1n of k!
c = sum(log(1l: (n-k))); % 1n of (n-k)!
out = round(exp(a-b-c)); % result

% End of function file.

Executing the MATLAB program yields the result illustrated in Figure 10.22. The curves
can be identified by comparison with Figure 10.20 inthe text.



Appendix A

Physical Noise Sources and Noise
Calculations

Problem A.1
All parts of the problem are solved using the relation
Vims = VAKTRB
where
k= 1.38x107% J/K

B = 30MHz =3 x 10’ Hz

(a) For R = 10,000 ohms and T' = Tp = 290 K

P

Vims =  4(1.38 x 10—23) (290) (10%) (3 x 107)
= 6.93x107° V rms
= 69.3 4V rms

(b) Vims is smaller than the result in part (a) by a factor of v/10 = 3.16. Thus
Vims = 21.9 4V rms

(¢) Vims is smaller than the result in part (a) by a factor of v/100 = 10. Thus
Vims = 6.93 4V rms

(d) Each answer becomes smaller by factors of 2, v/10 = 3.16, and 10, respectively.

1
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Problem A.2
Use - (SR I -

I =15 exp Z—;{ —1

i ¢
We want I > 2015 or exp l% —1>20.
(a) At T'=290 K, & ~ 40, so we have exp (40V') > 21 giving

vos 2CD 60761 volts
40
IVlevﬂ
.2 ~ ~
lrs =~ 2elB~ QeBI;[eXp T
Z.lgms = %I uev
or —5r = 2elsexp Lo

i 100 5¢
= 2 1.6x10 1.5 x 107 exp (40 x 0.0761)
= 1.0075 x 10722 A2 /Hz

b) If T =29 K, then £ = 400, and for I > 2015, we need exp(400V') > 21 or
kT

In (21) -3
=761 x1 1
V> 100 7.61 x 1077 volts

Thus

) . ¢ H ¢ 1 ¢

sy '1.6 %1072 1.5 x 1075 exp '400 x 7.61 x 102

= 1.0075 x 10722 A?/Hz

as before.
Problem A.3

(a) Use Nyquist’s formula to get the equivalent circuit of R, in parallel with Rz, where
R is given by
R R (R1+ Ry)
el — B b 1 Db
Ry + Ry + RL

The noise equivalent circuit is then as shown in Figure A.1. The equivalent noise voltages
are

. - CUTR.B

Vo, = 4kTR3B



Figure A.1:

Adding noise powers to get Vp we obtain

91 M€ .

R3 1 ¢
V¢ = T VE+ VP

eq

K Rs 2

= ——= __ (4kTB) (R, + R
Req + R3 ( )( q 3)
(4kTB) R

(Req + R3)
(b) With R1 =2000 2, Rp = R =300 2, and Rz = 500 2, we have

~ 300 (2000 + 300)

q = = 265.4 Q)
“1 300 + 2000 + 300
and
V& (4kT)Rj
B B (Req + RS)
4138 x 10727 (290) (500)?
500 + 265.4

= 5.23x 1078 V2/Hy
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Problem A.4
Find the equivalent resistance for the R1, Ry, R3 combination and set R) equal to this to

get
_ R3(R1+ Rp)

R =
" T Ri+ R+ Rs

Problem A.5
Using Nyquist’s formula, we find the equivalent resistance looking backing into the terminals
with Vins across them. It is

Req = 50k |20k (5k+10k+5 k)
= 50k [ 20 k| 20k
— 50k | 10 k

(50k) (10 k)

50k 4+ 10 k
= 8,333Q

Thus

V2. o= 4ki:TRqu i A
= 4 1.38x 1072 (400) (8333) 2 x 10°
= 3.68 x 10710 v?

which gives
Vims = 19.18 pV rms

Problem A.6
To find the noise figure, we first determine the noise power due to a source at the output,
and then due to the source and the network. Initally assume unmatched conditions. The

results are
- H T2
V2 _ R || R (4kTRsB)
due to Rs, only Rs+R1+ Ry H R
_ L 12
- Ry || R
0 due to R and Rz Rs + R1 + Ry || Ry ( ! )
R (Ri+R 2
4 LI (Bt Bs) %y, )

Ry + (R1+ Rs) || RL



_ u I,
B Ry || R
Ve = kT (Rs + R1) B
0 due to Rg, Ry and Ra R5+R1+R2 H RL [ﬂ ( s + 1) ]
R||(Ri+Rs) 7
4kTR, B
Ry +(R1+ Rs) || RL ( 2B)
The noise figure is
Ll 1
F:1+&+u R||(Ri+Rs) "FPRs+Ri+R | R ? Ry
Rs Ry + (R1+ Rs) || RL Ry || RL Rs
In the above,
RaRb
Ry|| Rp = ————
o= R Ry

Note that the noise due to R has been excluded because it belongs to the next stage. Since
this is a matching circuit, we want the input matched to the source and the output matched
to the load. Matching at the input requires that

RoRL
Rs=Rn=Ri1+Ry)| RL=R1+—=—"—7F7
s 1+ R || Re 1+R2+R|_
and matching at the output requires that
Ry (R1 + Rs)
R = Ryt = R Ri+Rg) ="~ >27
L =Tl (Bt Re) = 5 R

Next, these expressions are substituted back into the expression for F'. After some simpli-
fication, this gives

11
F:1+&+H QRZLRS(Rl‘f—Rz-f-Rs)/(Rs—Rl) 2&
Rs R% (R1+ Rs + RL) +R2|_ (R1+ Ry + Rs) Rs

Note that if R1 >> R, we then have matched conditions of R = Ry and Rs = R;. Then,
the noise figure simplifies to

Note that the simple resistive pad matching circuit is very poor from the standpoint of
noise. The equivalent noise temperature is found by using

Te = TOQF—l)
Ry *
= Ty 1+16—
o 1+ o
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Problem A.7
The important relationships are

Te Te
T T -5z 4 78
o=ttt Gt GG
Completion of the table gives
[ Ampl. No. | F | T | Ga, |
1 not needed | 300 K 10dB =10
2 6 dB 864.5 K | 30 dB = 1000
3 11 dB 3360.9 K | 30 dB = 1000
Therefore,
864.5 3360.9
Te, = 300
e LTI (10) (1000)
= 386.8 K
Hence,
Te
F = 1+=22
0 + T
= 233=3.68dB

(b) With amplifiers 1 and 2 interchanged

300 3360.9
Tey = 864.5+— 4 ——
e T (10) (1000)

= 865.14 K
This gives a noise figure of
865.14
F = 14—
0 200
= 398=6dB

(c) See part (a) for the noise temperatures.



(d) For B = 50 kHz, Ts = 1000 K, and an overall gain of G4 = 107, we have, for the
configuration of part (a)

Pna, out — Gaki(TO + Teo) B i ¢
= 107 1.38 x 1072 (1000 + 386.8) 5 x 10*
= 9.57 x 107° watt

We desire
Psa, out 104 o Psa, out

Pra, owt  9.57 x 1079

which gives
Psa, out = 9.57 x 107° watt

For part (b), we have

7 i —23¢ i 4¢
Pra owt = 107 1.38 x 10722 (1000 + 865.14) '5 x 10
= 1.29 x 1078 watt

Once again, we desire
Psa, out 4 Psa, out
—Saout g4 — __—Saout
Pha, out 1.29 x 10-8

which gives
Paa, out = 1.29 x 107* watt

and P
P i = —2 9 — 1929 x 107! watt
Ga
Problem A.8
(a) The noise figure of the cascade is
-1 F-1

overall 1+ Gal + (1/L)

(b) For two identicalattenuator-amplifier stages
F-1 L-1 F-1

Foverall =L+

0 WL ot~ IRE L

(c) Generalizing, for N stages we have

Foverall ~NFL
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Problem A.9
The data for this problem is
L Stage | K | G |
1 (preamp) | 2 dB = 1.58 G1

2 (mixer) | 8dB = 6.31 | 1.5 dB = 1.41
3 (amplifier) | 5 dB = 3.16 | 30 dB = 1000

The overall noise figure is
B-1 n F3—1

F =F
Y T GG,

which gives
6.31—1 3.16—-1

G + 1.42G4

5dB =3.16 > 1.58 +

or
5.31 — (2.16/1.41)
>
G122 1.58

(b) First, assume that G1 = 15 dB = 31.62. Then
6.31 — 1 3.16 -1

=4.33=6.37dB

F = 1.58
T 362 T 14 3L.62)
= 1.8=2.54dB
Then
Tes == TO (F - 1)
= 290(1.8— 1)
230.95 K
and
Toverall = Tes + Ta
= 230.95 + 300
= 530.95 K

Now use G1 as found in part (a):

F = 3.16
Tes = 290(3.16—1) = 6264 K



(c) For G1 = 15 dB = 31.62, G4 = 31.62 (1.41) (1000) = 4.46 x 10%. Thus

i ¢i ¢ P ¢
Praowt = 4.46x 10* '1.38 x 1072 (530.9) '10°
3.27 x 107° watts

For G1 = 6.37 dB = 4.33, G = 4.33(1.41) (1000) = 6.11 x 103. Thus

i ¢ ¢ i ¢
Praow = 6.11x10% '1.38 x 1072 (926.4) '107
= 7.81 x 1071 watts

Note that for the second case, we get less noise power out even wth a larger Toyeran. This
is due to the lower gain of stage 1, which more than compensates for the larger input noise
power.

(d) A transmission line with loss L = 2 dB connects the antenna to the preamp. We first
find Ts for the transmission line/preamp/mixer/amp chain:

Pr-1 kK-1 -1

Fs =F
S ot GTr, * GT1.G1 * Gr1.G1G2’

where

GrL =1/L =10"%1 = 0.631 and Fr, = L = 10%1° = 1.58
Assume two cases for G1: 15 dB and 6.37 dB. First, for G1 = 15 dB = 31.6, we have

Fo _ gsgalo8-1, 6311 3.16 — 1
S v 0.631 ' (0.631)(31.6) ' (0.631) (31.6) (1.41)
= 284
This gives
Ts =290 (2.84 — 1) = 534 K
and

Toverall =5344+300 =834 K
Now, for G1 = 6.37 dB = 4.33, we have

1.58 -1 6.31 -1 3.16 — 1

Fs = 158+ 0631 +(0,631)(4.33)+(0.631)(4.33)(1.41)

= 5

This gives
Ts =290(5—1) =1160 K



10 APPENDIX A. PHYSICAL NOISE SOURCES AND NOISE CALCULATIONS

and

Toveran = 1160 4+ 300 = 1460 K

Problem A.10
(a) Using
Pna, out — GakTSB

with the given values yields

Pha, ot = 7.45 x 107° watts

(b) We want

Psa, out _ 105

Pna, out
or L. ¢ . ¢

Psa out = 107 7.45 %10 = 0.745 watts
This gives
P.
Psa,in = S8 out () 745 x 1078 watts
Ga
= —51.28 dBm

Problem A.11

(a) For AA=1dB, Y = 1.259 and the effective noise temperature is

600 — (1.259) (300)
- 1.259 — 1

For AA=1.5dB, Y = 1.413 and the effective noise temperature is

Te =858.3 K

600 — (1.413) (300)
- 1.413 -1

For AA =2 dB, Y = 1.585 and the effective noise temperature is

Te =4264 K

_ 600 — (1.585) (300)

=2128 K
1.585 -1

Te

(b) These values can be converted to noise figure using



With Tp = 290 K, we get the following values:

11

(1) For AA=1dB, F =5.98 dB; (2) For

AA=15dB, F=3.938 dB; (3) For AA=2dB, F = 2.39 dB.

0.039 m
—202.4 dB

39.2dB
74.2 dABW

Problem A.12
(a) Using the data given, we can determine the following:
B n -
yo =
Gr =
PrGr =

This gives

Ps =-2024+474246 - 5= —127.2 dBW

(b) Using Pn = kT B for the noise power, we get

T,
Te
Py = 10logyg kTo —= B
T |
= 10 loglo [kTO] + 10 loglo — +10 10g10 (B)
91 11 )
1000 i ¢
= —17T4+10logjy g+ 10loggg 10°
= —108.6 dBm
—138.6 dABW
(c)
M PS'IT
s = —127.2 — (—138.6)
Pn dB

11.4 dB

1011* = 13.8 ratio

(d) Assuming the SNR = z = E}, /Ny = 13.8, we get the results for various digital signaling

techniques given in the table below:

” Modulation type | Error, probability

BPSK Q'V2z =74x10°8

DPSK ze 2 =5.06x10"7
Noncoh. FSK | e/ =5.03 x 10~*

QPSK Same as BPSK






